16.設(shè)F1、F2是雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1的焦點(diǎn),若雙曲線上有一點(diǎn)P,且PF1⊥PF2,求△PF1F2的面積.

分析 求出兩個(gè)焦點(diǎn)F1、F2 的坐標(biāo),Rt△PF1F2中,由勾股定理及雙曲線的定義得|PF1|•|PF2 |=4,從而求得△PF1F2面積$\frac{1}{2}$•|PF1|•|PF2 |的值.

解答 解:由題意得,a=$\sqrt{3}$,b=$\sqrt{2}$,c=1,∴F1(-1,0 )、F2(1,0),
Rt△PF1F2中,由勾股定理得4c2=|PF1|2+|PF2|2=(|PF1 |-|PF2|)2+2•|PF1|•|PF2 |=4a2+2•|PF1|•|PF2 |,
∴4=4×3+2•|PF1|•|PF2 |,∴|PF1|•|PF2 |=4,
∴△PF1F2面積為$\frac{1}{2}$|PF1|•|PF2 |=2.

點(diǎn)評(píng) 本題考查雙曲線的定義和雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,求出|PF1|•|PF2 |的值是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x>0}\\{x+12,x≤0}\end{array}\right.$,則f(-10)的值是( 。
A.$\frac{1}{4}$B.4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,已知四棱錐V-ABCD中,四邊形ABCD為正方形,VA=VB=VC=CD,若AB=2,VC=2.
(1)證明平面VAC⊥平面VBD;
(2)求正四棱錐V-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,A=60°,B=75°,c=3,求C,a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.圓上任意三點(diǎn)可確定的平面有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.1個(gè)或無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若角θ的終邊經(jīng)過(guò)點(diǎn)Q(sin(-660°),cos750°),則sinθ=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知,∁RA={x|x≤2},B={x|x≤a},若A∩B=∅,則a的取值范圍(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.判斷方程x2-cosx=0的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.等差數(shù)列{an}中,已知a1+a2=$\frac{1}{2}$,a3+a4=1,則a13+a14的值為$\frac{7}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案