【題目】下列選項(xiàng)中,說(shuō)法正確的是( )
A.命題“,”的否定為“,”;
B.命題“在中,,則”的逆否命題為真命題;
C.已知、m是兩條不同的直線(xiàn),是個(gè)平面,若,則;
D.已知定義在R上的函數(shù),則“為奇函數(shù)”是“”的充分必要條件.
【答案】C
【解析】
由特稱(chēng)命題的否定為全稱(chēng)命題,即可判斷A;
由,可得,再結(jié)合原命題與逆否命題等價(jià),即可判斷B;
由線(xiàn)面平行的性質(zhì)定理,即可判斷C;
根據(jù)奇函數(shù)的定義,即可判斷D.
解:對(duì)于A,由特稱(chēng)命題的否定為全稱(chēng)命題,可得命題“,”
的否定為“,”,故A錯(cuò);
對(duì)于B,命題“在中,,則”為假命題,比如,則.
再由原命題與其逆否命題等價(jià),則其逆否命題為假命題,故B錯(cuò);
對(duì)于C,已知、m是兩條不同的直線(xiàn),是個(gè)平面,若,則存在,,必有,又,則,所以,故C正確;
對(duì)于D,已知定義在R上的函數(shù),若為奇函數(shù),則,則,所以,滿(mǎn)足充分性;但不能推出為奇函數(shù),不滿(mǎn)足必要性,則“為奇函數(shù)”是“”的充分不必要條件,故D錯(cuò).
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓、拋物線(xiàn)的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線(xiàn)上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
3 | 2 | 4 | ||
0 | 4 |
(Ⅰ)求的標(biāo)準(zhǔn)方程;
(Ⅱ)請(qǐng)問(wèn)是否存在直線(xiàn)滿(mǎn)足條件:①過(guò)的焦點(diǎn);②與交不同兩點(diǎn)且滿(mǎn)足?若存在,求出直線(xiàn)的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求直線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;
(2)若直線(xiàn)與曲線(xiàn)交于兩點(diǎn),且設(shè)定點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①線(xiàn)性相關(guān)系數(shù)越大,兩個(gè)變量的線(xiàn)性相關(guān)性越強(qiáng);反之,線(xiàn)性相關(guān)性越弱;
②用來(lái)刻畫(huà)回歸效果,越大,說(shuō)明模型的擬合效果越好;
③根據(jù)列聯(lián)表中的數(shù)據(jù)計(jì)算得出的的值越大,兩類(lèi)變量相關(guān)的可能性就越大;
④在回歸分析模型中,殘差平方和越小,說(shuō)明模型的擬合效果越好;
⑤從勻速傳遞的產(chǎn)品生產(chǎn)流水線(xiàn)上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣.
其中真命題的序號(hào)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】不期而至的新冠肺炎疫情,牽動(dòng)了億萬(wàn)國(guó)人的心,全國(guó)各地紛紛捐贈(zèng)物資馳援武漢.有一批捐贈(zèng)物資需要通過(guò)輪船沿長(zhǎng)江運(yùn)送至武漢,已知該運(yùn)送物資的輪船在航行中每小時(shí)的燃料費(fèi)和它的速度的立方成正比,已知當(dāng)速度為10海里/時(shí)時(shí),燃料費(fèi)是6元/時(shí),而其他與速度無(wú)關(guān)的費(fèi)用是96元/時(shí),問(wèn)當(dāng)輪船的速度是多少時(shí),航行1海里所需的費(fèi)用總和最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ln (x+1)- -x,a∈R.
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為的正方形和高為的等腰梯形所在的平面互相垂直,,,與交于點(diǎn),點(diǎn)為線(xiàn)段上任意一點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求與平面所成角的正弦值;
(Ⅲ)是否存在點(diǎn)使平面與平面垂直,若存在,求出的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)為提高生產(chǎn)效率,開(kāi)展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說(shuō)明理由;
(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過(guò)和不超過(guò)的工人數(shù)填入下面的列聯(lián)表:
超過(guò) | 不超過(guò) | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?
附:,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com