【題目】某港口的水深(米)是時間(,單位:小時)的函數(shù),下面是每天時間與水深的關(guān)系表:
0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
10 | 13 | 9.9 | 7 | 10 | 13 | 10.1 | 7 | 10 |
經(jīng)過長期觀測, 可近似的看成是函數(shù)
(1)根據(jù)以上數(shù)據(jù),求出的解析式
(2)若船舶航行時,水深至少要11.5米才是安全的,那么船舶在一天中幾個小時可以安全的進(jìn)出該港?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)關(guān)于x的函數(shù).
(1)當(dāng)時,求的值域;
(2)若不等式對恒成立,求實數(shù)m的取值范圍;
(3)若函數(shù)有3個零點,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個命題:
①函數(shù)的一條對稱軸是;
②函數(shù)的圖象關(guān)于點(,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù)
④若,則,其中
以上四個命題中正確的有 (填寫正確命題前面的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .若曲線在點處的切線方程為(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個說法:
①殘差點分布的帶狀區(qū)域的寬度越窄相關(guān)指數(shù)越小
②在刻畫回歸模型的擬合效果時,相關(guān)指數(shù)的值越大,說明擬合的效果越好;
③在回歸直線方程中,當(dāng)解釋變量每增加一個單位時,預(yù)報變量平均增加個單位;
④對分類變量與,若它們的隨機(jī)變量的觀測值越小,則判斷“與有關(guān)系”的把握程度越大.
其中正確的說法是
A. ①④B. ②④C. ①③D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲、乙兩種產(chǎn)品所需煤、電力、勞動力、獲得利潤及每天資源限額(最大供應(yīng)量)如表所示:
產(chǎn)品 | 甲產(chǎn)品 | 乙產(chǎn)品 | 資源限額 |
煤(t) | 9 | 4 | 360 |
電力(kw·h) | 4 | 5 | 200 |
勞力(個) | 3 | 10 | 300 |
利潤(萬元) | 7 | 12 |
問:每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤總額最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,,為的中點.
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為,求的長;
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方形的四個頂點都在橢圓上,若橢圓的焦點在正方形的內(nèi)部,則橢圓的離心率的取值范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com