18.將函數(shù)f(x)=Asin(ωx)(A≠0,ω>0)的圖象向左平移$\frac{π}{6}$個單位,得到的圖象關(guān)于原點對稱,則ω的值可以為( 。
A.3B.4C.5D.6

分析 根據(jù)圖象平移關(guān)系以及三角函數(shù)的對稱性建立方程關(guān)系進行求解即可.

解答 解:f(x)=Asin(ωx)(A≠0,ω>0)的圖象向左平移$\frac{π}{6}$個單位,得到y(tǒng)=Asinω(x+$\frac{π}{6}$)=Asin(ωx+$\frac{π}{6}$ω),
若圖象關(guān)于原點對稱,
則$\frac{π}{6}$ω=kπ,
即ω=6k,k∈Z
當(dāng)k=1時,ω=6,
故選:D.

點評 本題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)三角函數(shù)的圖象平移關(guān)系求出函數(shù)的解析式,結(jié)合是就好像的對稱性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.?dāng)?shù)列{an}滿足:a1=2,an+1=$\frac{{a}_{n}}{2}$+$\frac{1}{{a}_{n}}$,n≥1,求該數(shù)列的通項an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知復(fù)數(shù)z=$\frac{2}{1+i}$+2i,則z的共軛復(fù)數(shù)是( 。
A.-1-iB.1-iC.1+iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級:0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~300為重度污染;>300為嚴(yán)重污染.
一環(huán)保人士記錄了去年某地某月10天的AQI的莖葉圖如圖所示.
(1)利用該樣本估計該地本月空氣質(zhì)量優(yōu)良(AQI≤100)的天數(shù);(按這個月總共30天計算)
(2)若從樣本的空氣質(zhì)量不佳(AQI>100)的這些天中,隨機地抽取兩天深入分析各種污染指標(biāo),求該兩天的空氣質(zhì)量等級恰好不同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}與{bn}滿足bn+1an+bnan+1=(-1)n+1,bn=$\frac{3+(-1)^{n-1}}{2}$,n∈N*,且a1=2,設(shè)數(shù)列{an}的前n項和為Sn,則S61=527.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在區(qū)間(0,3)上任取一個實數(shù)a,則不等式log2(4a-1)<0成立的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)Sn是公差d=-1的等差數(shù)列{an}的前n項和,且S1,S2,S4成等比數(shù)列,則an=( 。
A.-$\frac{1}{2}$-nB.$\frac{1}{2}$-nC.$\frac{1}{2}$+nD.-$\frac{1}{2}$+n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$sinα=\frac{3}{5}$,且α為第二象限角,則$tan({2α+\frac{π}{4}})$=(  )
A.$-\frac{19}{5}$B.$-\frac{5}{19}$C.$-\frac{31}{17}$D.$-\frac{17}{31}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=b•ax(其中a,b為正實數(shù)且a≠1)的圖象經(jīng)過點A(1,27),B(-1,3)
(1)試求a、b的值;
(2)若不等式ax+bx≥m在x∈[1,+∞)時恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案