6.若集合A={x|log4x≤$\frac{1}{2}$},B={x|(x+3)( x-1)≥0},則A∩(∁RB)=( 。
A.(0,1]B.(0,1)C.[1,2]D.[0,1]

分析 化簡(jiǎn)集合A、B,根據(jù)補(bǔ)集與交集的定義寫出運(yùn)算結(jié)果即可.

解答 解:集合A={x|log4x≤$\frac{1}{2}$}={x|0<x≤2},
B={x|(x+3)( x-1)≥0}={x|x≤-3或x≥1},
則∁RB={x|-3<x<1},
∴A∩(∁RB)={x|0<x<2}=(0,1).
故選:B.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在如圖所示的幾何體中,平面ACE⊥平面ABCD,四邊形ABCD 為平行四邊形,
∠CAD=90°,EF∥BC,EF=$\frac{1}{2}$BC,AC=$\sqrt{2}$,AE=EC=1.
(1)求證:CE⊥AF;
(2)若二面角E-AC-F 的余弦值為$\frac{{\sqrt{3}}}{3}$,求點(diǎn)D 到平面ACF 的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列說(shuō)法正確的是( 。
A.?x,y∈R,若x+y≠0,則x≠1且y≠-1
B.a∈R,“$\frac{1}{a}<1$”是“a>1”的必要不充分條件
C.命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.設(shè)隨機(jī)變量X~N(1,52),若P(X<0)=P(X>a-2),則實(shí)數(shù)a的值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知等差數(shù)列{an}中,Sn是數(shù)列{an}的前n項(xiàng)和,已知a2=9,S5=65.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列$\left\{{\frac{1}{{{S_n}-n}}}\right\}$的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.2016年1月1日起全國(guó)統(tǒng)一實(shí)施全面的兩孩政策.為了解適齡民眾對(duì)放開(kāi)生育二胎政策的態(tài)度,某市選取70后80后作為調(diào)查對(duì)象,隨機(jī)調(diào)查了100人并對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì),70后不打算生二胎的占全部調(diào)查人數(shù)的15%,80后打算生二胎的占全部被調(diào)查人數(shù)的45%,100人中共有75人打算生二胎.
(1)根據(jù)調(diào)查數(shù)據(jù),判斷是否有90%以上把握認(rèn)為“生二胎與年齡有關(guān)”,并說(shuō)明理由;
(2)以這100人的樣本數(shù)據(jù)估計(jì)該市的總體數(shù)據(jù),且以頻率估計(jì)概率,若從該市70后公民中(人數(shù)很多)隨機(jī)抽取3位,記其中打算生二胎的人數(shù)為X,求隨機(jī)變量X的分布列,數(shù)學(xué)期望E(X)和方差D(X).
參考公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知三棱錐的外接球的表面積為25π,該三棱錐的三視圖如圖所示,三個(gè)視圖的外輪廓都是直角三角形,則其側(cè)視圖面積的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖(1)所示,小明將一張矩形紙片沿對(duì)角線剪開(kāi),得到兩張三角形紙片如圖(2)所示,量得三角形紙片的斜邊長(zhǎng)為10cm,較小銳角為30°,再將這兩張三角形紙片擺成如圖(3)所示的形狀.最后將圖(3)中的△ABF繞直線AF翻轉(zhuǎn)180°得到△AB1F,AB1交DE于點(diǎn)H,如圖(4)所示,請(qǐng)你幫小明證明:AH=DH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.化簡(jiǎn)下列各式:
(1)sin2αcos2α+cos4α+sin2α;
(2)$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$(α為第二象限角).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.集合A={x∈N+|-1<x<4},B={x|x2≤4},則A∩B=( 。
A.{0,1,2}B.{1,2}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

同步練習(xí)冊(cè)答案