5.若數(shù)列{an}滿足2an=2an-1+d(n≥2)且a1,a2,a3,a4,a5,a6,a7,的方差為9,則d=±3.

分析 由題意可知,數(shù)列{an}是首項(xiàng)為a1,公差為$\frac4ywj5n5{2}$的等差數(shù)列,代入方差公式即可求得d.

解答 解:由2an=2an-1+d(n≥2),得an-an-1=$\fraca055v59{2}$(n≥2),
∴數(shù)列{an}是首項(xiàng)為a1,公差為$\fracgr5cpia{2}$的等差數(shù)列,
數(shù)據(jù)a1,a2,a3,a4,a5,a6,a7的平均數(shù)為a4,
∴$\frac{1}{7}[({a}_{1}-{a}_{4})^{2}+…+({a}_{7}-{a}_{4})^{2}]=9$,
即$\frac{1}{7}[(3×\fracy4ivil5{2})^{2}+(2×\frac0om1oyd{2})^{2}+…+(3×\frackq4nvtg{2})^{2}]=9$,
∴$\frac{9}{4}45ruhp1^{2}+g5ehu4f^{2}+\frac{1igthun^{2}}{4}+0+\frac{akd1xao^{2}}{4}+1sgyrum^{2}+\frac{9}{4}pljxki5^{2}$=63,
即d2=9,d=±3.
故答案為:±3.

點(diǎn)評 本題考查等差數(shù)列的通項(xiàng)公式,考查一組數(shù)據(jù)的方差,是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知兩個(gè)動(dòng)點(diǎn)A、B和一個(gè)定點(diǎn)M(x0,y0)均在拋物線C:y2=2px(p>0)上(A、B與M不重合).設(shè)F為拋物線的焦點(diǎn),Q為其對稱軸上一點(diǎn),若$(\overrightarrow{QA}+\frac{1}{2}\overrightarrow{AB})•\overrightarrow{AB}=0$,且$|\overrightarrow{FA}|$、$|\overrightarrow{FM}|$、$|\overrightarrow{FB}|$成等差數(shù)列.
(Ⅰ)求$\overrightarrow{OQ}$的坐標(biāo)(可用x0、y0和p表示);
(Ⅱ)若$|\overrightarrow{OQ}|\;=3$,$|\overrightarrow{FM}|\;=\frac{5}{2}$,A、B兩點(diǎn)在拋物線C的準(zhǔn)線上的射影分別為A1、B1,求四邊形ABB1A1面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓C:(x-1)2+(y-1)2=1和點(diǎn)M(2,3).
(1)過點(diǎn)M向圓C引切線l,求直線l的方程;
(2)求以點(diǎn)M為圓心,且被直線y=2x+4截得的弦長為4的圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線y=$\frac{1}{2}$x+b能作為下列函數(shù)y=f(x)的切線有( 。
①f(x)=$\frac{1}{x}$;②f(x)=lnx;③f(x)=sinx;④f(x)=-ex
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.不等式x2(x-4)≥0的解集是{x|x≥4或x=0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,圖案共分9個(gè)區(qū)域,有6種不同顏色的涂料可供涂色,每個(gè)區(qū)域只能涂一種顏色的涂料,其中2和9同色、3和6同色、4和7同色、5和8同色,且相鄰區(qū)域的顏色不相同,則涂色方法有(  )
A.360種B.720種C.780種D.840種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)命題p:$\left\{\begin{array}{l}{2x+y-2≥0}\\{x+3y-6≤0}\\{x-k≤0}\end{array}\right.$(x,y,k∈R,且k>0);命題q:(x-1)2+y2≤5(x,y∈R).若p是q的充分不必要條件為真命題,則k的取值范圍是(0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列程序,若輸出的y的值是150,則輸入的x的值是(  )
A.15B.20C.150D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.計(jì)算下列各式:
(1)($\frac{16}{81}$)${\;}^{-\frac{3}{4}}}$-($\sqrt{3}$-$\sqrt{2}$)0-(1$\frac{9}{16}$)${\;}^{\frac{1}{2}}}$;
(2)log98log29-(lg$\frac{5}{2}$+2lg2).

查看答案和解析>>

同步練習(xí)冊答案