已知函數(shù)y=f(x)為奇函數(shù),且當(dāng)x>0時,f(x)=x+2,則當(dāng)x<0時,f(x)的解析式為
f(x)=x-2
f(x)=x-2
分析:當(dāng)x<0時,-x>0,結(jié)合當(dāng)x>0時,f(x)=x+2,可得f(-x)的解析式,結(jié)合奇函數(shù)的性質(zhì)f(-x)=-f(x),可得結(jié)論.
解答:解:當(dāng)x<0時,-x>0
又∵當(dāng)x>0時,f(x)=x+2,
∴f(-x)=-x+2,
又∵函數(shù)y=f(x)為奇函數(shù),
∴f(-x)=-f(x)
∴當(dāng)x<0時,f(x)的解析式為f(x)=x-2
故答案為:f(x)=x-2
點評:本題考查的知識點是函數(shù)奇偶性的性質(zhì),函數(shù)解析式的方法,熟練掌握奇函數(shù)的性質(zhì)f(-x)=-f(x),是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、已知函數(shù)y=f(x)是R上的奇函數(shù)且在[0,+∞)上是增函數(shù),若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2、已知函數(shù)y=f(x+1)的圖象過點(3,2),則函數(shù)f(x)的圖象關(guān)于x軸的對稱圖形一定過點( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x<0時,f(x)=x(1-x),那么當(dāng)x>0時,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0 時,f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習(xí)冊答案