數(shù)列{an}滿足a1=a,a2=-a(a>0),且{an}從第二項(xiàng)起是公差為6的等差數(shù)列,Sn是{an}的前n項(xiàng)和.
(1)當(dāng)n≥2時(shí),用a與n表示an與Sn;
(2)若在S6與S7兩項(xiàng)中至少有一項(xiàng)是Sn的最小值,試求a的取值范圍;
(3)若a為正整數(shù),在(2)的條件下,設(shè)Sn取S6為最小值的概率是p1,Sn取S7為最小值的概率是p2,比較p1與p2的大。
分析:(1)因?yàn)閿?shù)列是等差數(shù)列,所以由通項(xiàng)公式和前n項(xiàng)和公式求解.
(2)由 (1)知:{a
n}是等差數(shù)列,且公差為6,所以數(shù)列遞增,如果S
6是S
n的最小值,則有
,若S
7是S
n的最小值,則有
兩種情況最后取并集.
(3)由“a是正整數(shù)”,則本題是一個(gè)古典概型,由(2)知,a的所以取值為:24,25,26,…,36.當(dāng)S
6是S
n最小值時(shí),a的取值為:24,25,26,27,28,29,30,當(dāng)S
7是S
n最小值時(shí),a的取值為:30,31,32,33,34,35,36,由概率公式求得p
1,p
2再比較.
.
解答:解:(1)由已知,當(dāng)n≥2時(shí),a
n=-a+6(n-2),
即a
n=6n-(a+12).
∴S
n=a
1+a
2+a
3++a
n=a+(n-1)(-a)+
•6=3n
2-(a+9)n+2a+6.
(2)由已知,當(dāng)n≥2時(shí),{a
n}是等差數(shù)列,公差為6,數(shù)列遞增.
若S
6是S
n的最小值,則
即
∴24≤a≤30.
若S
7是S
n的最小值,則
即
∴30≤a≤36.
∴當(dāng)S
6與S
7兩項(xiàng)中至少有一項(xiàng)是S
n的最小值時(shí),a的取值范圍是[24,36].
(3)∵a是正整數(shù),由(2)知,a=24,25,26,,36.
當(dāng)S
6是S
n最小值時(shí),a=24,25,26,27,28,29,30
當(dāng)S
7是S
n最小值時(shí),a=30,31,32,33,34,35,36
∴p
1=p
2=
.
點(diǎn)評:本題主要考查等差數(shù)列的通項(xiàng)及前n項(xiàng)和公式以及用通項(xiàng)法研究前n和最值問題,同時(shí),還滲透了概率問題,綜合性較強(qiáng),轉(zhuǎn)化比較靈活,要求比較高.