2.已知數(shù)列{an}滿足a1=1,且an=2an-1+2n(n≥2且n∈N*).
(Ⅰ)求證數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求Sn;
(Ⅲ)設(shè)bn=$\frac{{S}_{n}-3}{{3}^{n}}$,試求數(shù)列{bn}的最大項(xiàng).

分析 (Ⅰ)根據(jù)等差數(shù)列的定義,判斷數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是等差數(shù)列,并寫出它的通項(xiàng)公式以及{an}的通項(xiàng)公式;
(Ⅱ)根據(jù)數(shù)列{an}的前n項(xiàng)和定義,利用錯位相減法求出Sn
(Ⅲ)根據(jù){bn}的通項(xiàng)公式,求出最大項(xiàng)對應(yīng)的項(xiàng)數(shù)n,即可求出{bn}的最大項(xiàng).

解答 解:(Ⅰ)由an=2an-1+2n(n≥2且n∈N*).
得$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+1,
即{$\frac{{a}_{n}}{{2}^{n}}$}是首項(xiàng)為$\frac{1}{2}$,公差d=1的等差數(shù)列,
則$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$+(n-1)=n-$\frac{1}{2}$,
數(shù)列{an}的通項(xiàng)公式an=(2n-1)•2n-1;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求Sn;
∵an=(2n-1)•2n-1
∴Sn=1•20+3•21+5•22+…+(2n-1)•2n-1;
2Sn=1•21+3•22+…+(2n-1)•2n;
兩式相減得-Sn=1+2(21+22+…+2n-1)-(2n-1)•2n
=1+$\frac{{2}^{2}(1-{2}^{n+1})}{1-2}$-(2n-1)•2n
=-3+(3-2n)•2n
∴Sn=(2n-3)•2n+3;
(Ⅲ)∵bn=$\frac{{S}_{n}-3}{{3}^{n}}$,∴bn═(2n-3)•($\frac{2}{3}$)n
由$\left\{\begin{array}{l}{_{n}{≥b}_{n+1}}\\{_{n}{≥b}_{n-1}}\end{array}\right.$,
即$\left\{\begin{array}{l}{(2n-3){•(\frac{2}{3})}^{n}≥(2n-1){•(\frac{2}{3})}^{n+1}}\\{(2n-3)•(\frac{2}{3}){•(\frac{2}{3})}^{n}≥(2n-5){•(\frac{2}{3})}^{n-1}}\end{array}\right.$,
解得$\frac{7}{2}$≤n≤$\frac{9}{2}$,即n=4,
即數(shù)列{bn}的最大項(xiàng)為bn=$\frac{80}{81}$.

點(diǎn)評 本題考查了等差與等比數(shù)列的定義、通項(xiàng)公式與前n項(xiàng)和公式的應(yīng)用問題,也考查了錯位相減法求數(shù)列的個項(xiàng)和的問題,考查了不等式的解法與應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.化簡:$\frac{si{n}^{3}(-α)cos(α+5π)tan(α+2π)}{co{s}^{3}(-2π-α)sin(-α-π)ta{n}^{3}(4π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}首項(xiàng)是a1=1,且滿足遞推關(guān)系${a_{n+1}}=2{a_n}+{2^n}(n∈{N^*})$.
(1)證明:數(shù)列$\left\{{\frac{a_n}{2^n}}\right\}$是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)求等差數(shù)列$\left\{{b_n}\right\}(n∈{N^*})$使得對一切自然數(shù)n∈N*都有如下的等式成立:${b_1}C_n^0+{b_2}C_n^1+{b_3}C_n^2+…+{b_{n+1}}C_n^n={a_{n+1}}$;
(3)cn=nbn,是否存在正常數(shù)M使得$\frac{c_1}{a_1}+\frac{c_2}{a_2}+…+\frac{c_n}{a_n}<M$對n∈N*恒成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,根據(jù)下列條件解三角形,其中有一解的是( 。
A.b=7,c=3,C=30°B.b=5,c=4$\sqrt{2}$,B=45°C.a=6,b=6$\sqrt{3}$,B=60°D.a=20,b=30,A=30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.計算:
(1)計算${27^{\frac{2}{3}}}-{2^{{{log}_2}3}}×{log_2}\frac{1}{8}+{log_2}3×{log_3}$4
(2)已知tanα=$\sqrt{3},π<α<\frac{3}{2}$π,求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.對于在區(qū)間[a,b]上有意義的兩個函數(shù)f(x)和g(x),如果對任意x∈[a,b],均有|f(x)-g(x)|<1,那么我們稱f(x)和g(x)在[a,b]上是接近的.若f(x)=log2(kx+1)與g(x)=log2x在閉區(qū)間[1,2]上是接近的,則實(shí)數(shù)k的一個可能值是(0,1)中的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面單位向量,$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=$\frac{1}{2}$,若平面向量$\overrightarrow$滿足$\overrightarrow b•\overrightarrow{e_1}=2,\overrightarrow b•\overrightarrow{e_2}=\frac{5}{2}$,則$|{\overrightarrow b}|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如果α在第三象限,則$\frac{α}{3}$一定不在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$且目標(biāo)函數(shù)z=ax+y僅在點(diǎn)(2,1)處取得最小值,則實(shí)數(shù)a的取值范圍是(-2,1).

查看答案和解析>>

同步練習(xí)冊答案