20.已知cos(π-α)=-$\frac{5}{13}$且α是第一象限角,則sinα=(  )
A.$-\frac{5}{13}$B.$\frac{12}{13}$C.$-\frac{12}{13}$D.$\frac{5}{13}$

分析 利用同角三角函數(shù)間的基本關(guān)系直接求解sinα的值.

解答 解:∵cos(π-α)=-$\frac{5}{13}$,
∴cos(π-α)=-cosα=-$\frac{5}{13}$,則cosα=$\frac{5}{13}$,
∵α是第一象限角,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\sqrt{1-(\frac{5}{13})^{2}}$=$\frac{12}{13}$.
故選:B.

點評 此題考查了同角三角函數(shù)間的基本關(guān)系,以及誘導(dǎo)公式的應(yīng)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.橢圓$\frac{{x}^{2}}{3}$+y2=1的左、右焦點F1,F(xiàn)2,點A,B在橢圓上,若$\overrightarrow{{F}_{1}A}$=5$\overrightarrow{{F}_{2}B}$,則A坐標(biāo)是(0,±1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若等比數(shù)列{an}的通項公式為an=3×2n-1,則其公比q=(  )
A.-2B.2C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a>0,b>0,若不等式$\frac{m}{2a+b}-\frac{2}{a}-\frac{1}≤0$恒成立,則m的最大值為(  )
A.4B.16C.9D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等比數(shù)列{an}的前n項和為Sn,若S3=12,S6=60,則S9=( 。
A.192B.300C.252D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{4^x}-a,x≥0\\{log_2}({-x})+a,x<0\end{array}\right.$,若f(1)=3,則f(-2)的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.為了得到函數(shù)y=2×2x的圖象,可以把函數(shù)y=2x的圖象( 。
A.向左平移1個單位長度B.向右平移1個單位長度
C.向左平移2個單位長度D.向右平移2個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)的定義域為D,若存在閉區(qū)間[m,n]⊆D,使得函數(shù)f(x)滿足以下兩個條件:
(1)f(x)在[m,n]上是單調(diào)函數(shù);
(2)f(x)在[m,n]上的值域為[2m,2n],則稱區(qū)間[m,n]為y=f(x)的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有①③④(填上所有正確的序號)
①f(x)=x2(x≥0)
②f(x)=ex(x∈R)
③$f(x)=\frac{4x}{{{x^2}+1}}({x≥0})$
④$f(x)={log_2}({{2^x}-\frac{1}{8}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若工人月工資(元)依勞動產(chǎn)值(萬元)變化的回歸直線方程為$\stackrel{∧}{y}$=60+90x,則下列說法正確的是③(填序號).
①勞動產(chǎn)值為10000元時,工資為50元;
②勞動產(chǎn)值提高10000元時,工資提高150元;
③勞動產(chǎn)值提高10000元時,工資提高90元;
④勞動產(chǎn)值為10000元時,工資為90元.

查看答案和解析>>

同步練習(xí)冊答案