5.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{4^x}-a,x≥0\\{log_2}({-x})+a,x<0\end{array}\right.$,若f(1)=3,則f(-2)的值為2.

分析 由已知得f(1)=41-a=3,從而a=1,進(jìn)而f(-2)=log2(-2)+a=log22+1,由此能求出結(jié)果.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}{4^x}-a,x≥0\\{log_2}({-x})+a,x<0\end{array}\right.$,f(1)=3,
∴f(1)=41-a=3,解得a=1,
∴f(-2)=log2(-2)+a=log22+1=2.
故答案為:2.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足${a_1}=\frac{1}{2},{a_n}+2{S_n}{S_{n-1}}=0(n≥2)$.
①數(shù)列$\left\{{\frac{1}{S_n}}\right\}$是否為等差數(shù)列?并證明你的結(jié)論;            
②求Sn;
③求證:$S_1^2+S_2^2+S_3^2+…+S_n^2<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知銳角三角形三邊長(zhǎng)分別為1,3,a,則a的取值范圍是(  )
A.8<a<10B.2$\sqrt{2}<a<\sqrt{10}$C.$2\sqrt{2}<a<10$D.$\sqrt{10}<a<8$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.直線l0:y=x+1繞點(diǎn)P(3,1)逆時(shí)針旋轉(zhuǎn)90°得到直線l,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知cos(π-α)=-$\frac{5}{13}$且α是第一象限角,則sinα=( 。
A.$-\frac{5}{13}$B.$\frac{12}{13}$C.$-\frac{12}{13}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.從4名男生和3名女生中任選2人參加演講比賽,
(1)求所選2人都是男生的概率;
(2)求所選2人恰有1名女生的概率;
(3)求所選2人中至少有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知$f(x)={log_{\frac{1}{2}}}({1+x})-{log_{\frac{1}{2}}}({1-x})$
(1)求f(x)的定義域;
(2)求使f(x)>0成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)是定義在{x|x≠0}上的偶函數(shù),且當(dāng)x>0時(shí),f(x)=log2x.
(1)求出函數(shù)f(x)的解析式;
(2)畫(huà)出函數(shù)|f(x)|的圖象,并根據(jù)圖象寫(xiě)出函數(shù)|f(x)|的增區(qū)間;
(3)設(shè)g(x)=ax+1(a>0),對(duì)任意${x_1}∈[\frac{1}{2},4]$,存在${x_0}∈[\frac{1}{2},4]$使g(x1)=|f(x0)|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$•$\overrightarrow$的值為( 。
A.-4B.8C.-1D.-7

查看答案和解析>>

同步練習(xí)冊(cè)答案