【題目】如圖,正方體的棱長(zhǎng)為,動(dòng)點(diǎn)在線段上,、分別是、的中點(diǎn),則下列結(jié)論中正確的是______________.

所成角為;

平面;

③存在點(diǎn),使得平面平面

④三棱錐的體積為定值.

【答案】②④

【解析】

利用線線平行,找出異面直線的夾角的平面角,求出即可,可判斷①的正誤;根據(jù)線面垂直的判定定理即可判斷②的正誤;利用面面平行的性質(zhì)定理可判斷③的正誤;利用等體積法即可求出棱錐的體積,可判斷④的正誤.綜合可得出結(jié)論.

對(duì)于①,、分別為的中點(diǎn),

在正方體中,,則四邊形為平行四邊形,

異面直線所成的角為,

中,,所以,為等邊三角形,則,即①錯(cuò)誤;

對(duì)于②,,,,,

,

又因?yàn)?/span>平面,且平面,所以

因?yàn)?/span>,所以平面,即②正確;

對(duì)于③,若平面平面,因?yàn)槠矫?/span>平面,

所以平面平面,但平面與平面有公共點(diǎn),所以③錯(cuò)誤;

對(duì)于④,(定值),即④正確.

故答案為:②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)已知函數(shù)的兩個(gè)零點(diǎn)為

(1)求實(shí)數(shù)m的取值范圍;

(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年,南昌市召開了全球VR產(chǎn)業(yè)大會(huì),為了增強(qiáng)對(duì)青少年VR知識(shí)的普及,某中學(xué)舉行了一次普及VR知識(shí)講座,并從參加講座的男生中隨機(jī)抽取了50人,女生中隨機(jī)抽取了70人參加VR知識(shí)測(cè)試,成績(jī)分成優(yōu)秀和非優(yōu)秀兩類,統(tǒng)計(jì)兩類成績(jī)?nèi)藬?shù)得到如下的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計(jì)

男生

a

35

50

女生

30

d

70

總計(jì)

45

75

120

(1)確定a,d的值;

(2)試判斷能否有90%的把握認(rèn)為VR知識(shí)的測(cè)試成績(jī)優(yōu)秀與否與性別有關(guān);

(3)為了宣傳普及VR知識(shí),從該校測(cè)試成績(jī)獲得優(yōu)秀的同學(xué)中按性別采用分層抽樣的方法,隨機(jī)選出6名組成宣傳普及小組.現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求“到校外宣傳的2名同學(xué)中至少有1名是男生”的概率.

附:

P(K2≥k0)

0.25

0.15

0.10

0.05

0.025

0.010

k0

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

2)若存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為是橢圓上的一點(diǎn),且在第一象限內(nèi),過且斜率等于-1的直線與橢圓交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為

(1)證明:直線的斜率為定值;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,橢圓的極坐標(biāo)方程為,其左焦點(diǎn)在直線上.

(1)若直線與橢圓交于兩點(diǎn),求的值;

(2)求橢圓的內(nèi)接矩形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形ABCD中,,,,,EAD的中點(diǎn),OACBE的交點(diǎn).沿BE折起到圖2的位置,得到四棱錐.

1)證明:平面

2)若平面平面,求平面與平面夾角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有若干撲克牌:6張牌面分別是23,4,56,7的撲克牌各一張,先后從中取出兩張.若每次取后放回,連續(xù)取兩次,點(diǎn)數(shù)之和是偶數(shù)的概率為;若每次取后不放回,連續(xù)取兩次,點(diǎn)數(shù)之和是偶數(shù)的概率為,則(

A.B.C.D.以上三種情況都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案