【題目】已知常數(shù)λ≥0,設各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足:a1 = 1,

).

(1)若λ = 0,求數(shù)列{an}的通項公式;

(2)若對一切恒成立,求實數(shù)λ的取值范圍.

【答案】III

【解析】

試題(I時,,變形得,即數(shù)列為一個等差數(shù)列,從而,再根據(jù);也可變形為,即,從而有II)同(I)可得,再利用疊加法得到,利用 ,因為對一切恒成立,可化簡為對一切恒成立,變量分離得對一切恒成立,下面只需求出最大值即可,利用求數(shù)列單調性方法得是一切中的最大項,因此

試題解析:解:(I時,

,

,

,

II ,

,,).

相加,得

).

上式對也成立,

).

).

,得,即

,

對一切恒成立,

對一切恒成立.即對一切恒成立.

,則

時,;

時,;

是一切中的最大項.

綜上所述,的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐A﹣BCD中,已知三角形ABC和三角形DBC所在平面互相垂直,AB=BD,∠CBA=∠CBD= ,則直線AD與平面BCD所成角的大小是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (α∈[0,2π))是奇函數(shù),則α=(
A.0
B.
C.π
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:y=k(x+2)與圓O:x2+y2=4相交于不重合的A、B兩點,O是坐標原點,且三點A、B、O構成三角形.

(1)求k的取值范圍;

(2)三角形ABO的面積為S,試將S表示成k的函數(shù),并求出它的定義域;

(3)求S的最大值,并求取得最大值時k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知P在橢圓上,是橢圓的兩個焦點,,的三條邊長成等差數(shù)列,則橢圓的離心率e =___________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講
設函數(shù)f(x)=|x﹣1|﹣|2x+1|的最大值為m.
(1)作出函數(shù)f(x)的圖象;
(2)若a2+2c2+3b2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了了解本校高一學生每周課外閱讀時間(單位:小時)的情況,按10%的比例對該校高一600名學生進行抽樣統(tǒng)計,將樣本數(shù)據(jù)分為5組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10),并將所得數(shù)據(jù)繪制成如圖所示的頻率分布直方圖:
(Ⅰ)求圖中的x的值;
(Ⅱ)估計該校高一學生每周課外閱讀的平均時間;
(Ⅲ)為了進一步提高本校高一學生對課外閱讀的興趣,學校準備選拔2名學生參加全市閱讀知識競賽,現(xiàn)決定先在第三組、第四組、第五組中用分層抽樣的放法,共隨機抽取6名學生,再從這6名學生中隨機抽取2名學生代表學校參加全市競賽,在此條件下,求第三組學生被抽取的人數(shù)X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線x2=4y的焦點為F,過點F作斜率為k(k>0)的直線l與拋物線相交于A、B兩點,且點P恰為AB的中點,過點P作x軸的垂線與拋物線交于點M,若|MF|=4,則直線l的方程為(
A.
B.y= x+1
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=lnx,g(x)= (m>0).
(1)當m=1時,函數(shù)y=f(x)與y=g(x)在x=1處的切線互相垂直,求n的值;
(2)若對任意x>0,恒有|f(x)|≥|g(x)|成立,求實數(shù)n的值及實數(shù)m的最大值.

查看答案和解析>>

同步練習冊答案