【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個平面互相垂直,FBAEFB2EA.

1)證明:平面EFD⊥平面ABFE

2)求二面角EFDC的余弦值.

【答案】1)證明見解析(2

【解析】

1)先證明AB⊥平面BCF,然后可得平面EFD⊥平面ABFE

2)建立空間直角坐標系,求解平面的法向量,然后利用向量的夾角公式可求.

1)由題可得,因為ABCD是正方形且三角形FBC是正三角形,所以BCAD,BCAD,FBBC且∠FBC60°,

又因為EAFB,2EAFB,所以∠EAD60°,在三角形EAD中,根據余弦定理可得:EDAE.

因為平面ABCD⊥平面FBC,ABBC,平面ABCD平面FBCBC,且AB平面ABCD,所以AB⊥平面BCF,

因為BCAD, E AFBFBBCB,且FBBC平面FCB,EAAD平面EAD,所以平面EAD∥平面FBC,所以AB⊥平面EAD,

又因為ED平面EAD,所以ABED,

綜上:EDAEEDAB,EAABAEA、AB平面ABFE,所以DE⊥平面ABFE

DE平面DEF,所以平面EFD⊥平面ABFE.

2)如圖,分別取BCAD的中點OG,連接OFOG,

因為BOOC且三角形FBC為正三角形,所以FOBC,

因為AGGD,BOOC,所以OGAB,

由(1)可得,AB⊥平面FBC,則OG⊥平面FBC,

OFOB、OG兩兩垂直,分別以OBOG、OF所在直線為xy,z軸建立如圖所示的空間直角坐標系,

不妨設BC4,則

設平面DEF的法向量為,平面DCF的法向量為,

,

所以

又二面角EFDC是鈍二面角,所以二面角EFDC的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】今年情況特殊,小王在居家自我隔離時對周邊的水產養(yǎng)殖產業(yè)進行了研究.兩個投資項目的利潤率分別為投資變量.根據市場分析,的分布列分別為:

5%

10%

0.8

0.2

2%

8%

12%

0.2

0.5

0.3

1)若在兩個項目上各投資萬元,分別表示投資項目所獲得的利潤,求方差,;

2)若在兩個項目上共投資萬元,那么如何分配,能使投資項目所得利潤的方差與投資項目所得利潤的方差的和最小,最小值是多少?

(注:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,分別為,的中點是由繞直線旋轉得到,連結,,.

1)證明:平面;

2)若,棱上是否存在一點,使得?若存在,確定點 的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意,給定區(qū)間,設函數(shù)表示實數(shù)所屬的給定區(qū)間內唯一整數(shù)之差的絕對值.

1)當時,求出的解析式;時,寫出絕對值符號表示的解析式;

2)求,,判斷函數(shù)的奇偶性,并證明你的結論;

3)當時,求方程的實根.(要求說明理由,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《周易》是我國古代典籍,用描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中表示一個陽爻,表示一個陰爻).若從八卦中任取兩卦,這兩卦的六個爻中恰有一個陽爻的概率為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】采購經理指數(shù)(PMI)是衡量一個國家制造業(yè)的體檢表,是衡量制造業(yè)在生產新訂單、商品價格、存貨、雇員、訂單交貨、新出口訂單和進口等八個方面狀況的指數(shù),下圖為20189—20199月我國制造業(yè)的采購經理指數(shù)(單位:%.

1)求2019年前9個月我國制造業(yè)的采購經理指數(shù)的中位數(shù)及平均數(shù)(精確到0.1);

2)從20194—20199月這6個月任意選取2個月,求這兩個月至少有一個月采購經理指數(shù)與上個月相比有所回升的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是拋物線的焦點,是其準線上任意一點,過點作直線,與拋物線相切,,為切點,軸分別交于,兩點.

1)求焦點的坐標,并證明直線過點;

2)求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標準.對于高中男體育特長生而言,當數(shù)值大于或等于20.5時,我們說體重較重,當數(shù)值小于20.5時,我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.

(Ⅰ)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據如散點圖,請根據所得信息,完成下述列聯(lián)表,并判斷是否有的把握認為男生的身高對指數(shù)有影響.

身高較矮

身高較高

合計

體重較輕

體重較重

合計

(Ⅱ)①從上述32名男體育特長生中隨機選取8名,其身高和體重的數(shù)據如表所示:

編號

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

體重

57

58

53

61

66

57

50

66

根據最小二乘法的思想與公式求得線性回歸方程為.利用已經求得的線性回歸方程,請完善下列殘差表,并求(解釋變量(身高)對于預報變量(體重)變化的貢獻值)(保留兩位有效數(shù)字);

編號

1

2

3

4

5

6

7

8

體重(kg

57

58

53

61

66

57

50

66

殘差

②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據,需要確認在樣本點的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據的體重應該為.小明重新根據最小二乘法的思想與公式,已算出,請在小明所算的基礎上求出男體育特長生的身高與體重的線性回歸方程.

參考數(shù)據:

,,

參考公式:,,,

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD為菱形,∠ABC60°,AA1AB,MN分別為AB,AA1的中點.

1)求證:平面B1NC⊥平面CMN;

2)若AB2,求點N到平面B1MC的距離.

查看答案和解析>>

同步練習冊答案