【題目】過點作圓的兩條切線,切點分別為,直線恰好經(jīng)過橢圓C的右頂點和上頂點.

1)求橢圓C方程;

2)過橢圓C左焦點F的直線l交橢圓C兩點,橢圓上存在一點P,使得四邊形為平行四邊形,求直線l的方程。

【答案】(1);(2).

【解析】

1)由題意可設切線方程為,利用圓心到直線的距離等于半徑確定斜率的值可得切線方程,據(jù)此確定點N的坐標為,從而可得橢圓方程;

2)①k不存在或k=0時,在橢圓上不存在點P使得四邊形OAPB為平行四邊形,

②當k存在且不為0時,設點,設直線l的方程為y=kx+1),聯(lián)立直線方程與橢圓方程,結合題意和韋達定理確定直線的斜率即可確定直線l的方程.

1)過作圓的兩條切線,一條切線方程為y=1,切點為M0,1.

設另一條切線為,即

由直線與圓相切,有:

,解得k=0(舍去).

故切線方程為

可得:.

可得直線MN的方程為.

由上可知,上頂點坐標為(0,1),右頂點坐標為.

所以橢圓C的方程為.

2)①k不存在或k=0時,在橢圓上不存在點P使得四邊形OAPB為平行四邊形,

②當k存在且不為0時,設點,

設直線l的方程為y=kx+1),

聯(lián)立直線方程與橢圓方程可得:,

,

若四邊形OAPB為平行四邊形,則有:

,

.

又點P在橢圓上,則有,

整理得.

∴直線的方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB為圓O的直徑,點E、F在圓O上,ABEF,矩形ABCD所在的平面與圓O所在的平面互相垂直.已知AB2EF1

(Ⅰ)求證:平面DAF⊥平面CBF;

(Ⅱ)當AD1時,求直線FB與平面DFC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交元的管理費,預計當每件商品的售價為元時,一年的銷售量為萬件.

1)求該連鎖分店一年的利潤(萬元)與每件商品的售價的函數(shù)關系式;

2)當每件商品的售價為多少元時,該連鎖分店一年的利潤最大,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在邊長為2的菱形中,,將沿對角線折起到的位置,使平面平面,的中點,平面,且,如圖2.

1)求證:平面

2)求平面與平面所成角的余弦值;

3)在線段上是否存在一點,使得平面?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某書店為了了解銷售單價(單位:元)在內的圖書銷售情況,從2018年上半年已經(jīng)銷售的圖書中隨機抽取100本,獲得的所有樣本數(shù)據(jù)按照,,,分成6組,制成如圖所示的頻率分布直方圖,已知樣本中銷售單價在內的圖書數(shù)是銷售單價在內的圖書數(shù)的2.

1)求出xy,再根據(jù)頻率分布直方圖佔計這100本圖書銷售單價的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

2)用分層抽樣的方法從銷售單價在內的圖書中共抽取40本,求單價在6組樣本數(shù)據(jù)中的圖書銷售的數(shù)量;

3)從(2)中抽取且價格低于12元的書中任取2本,求這2本書價格都不低于10元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題(1條斜線段長相等,則他們在平面內的射影長也相等;(2)直線不在平面內,他們在平面內的射影是兩條平行直線,則;(3)與同一平面所成的角相等的兩條直線平行;(4)一條直線與一個平面所成的角是,那么它與平面內任何其他直線所成的角都不小于;其中正確的命題序號是____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓錐的側面展開圖是一個半圓.

1)求圓錐的母線與底面所成的角;

2)過底面中心且平行于母線的截平面,若截面與圓錐側面的交線是焦參數(shù)(焦點到準線的距離)為的拋物線,求圓錐的全面積;

3)過底面點作垂直且于母線的截面,若截面與圓錐側面的交線是長軸為的橢圓,求橢圓的面積(橢圓號的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市交通部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

3)已知滿意度評分值在內的男生數(shù)與女生數(shù)3:2,若在滿意度評分值為的人中隨機抽取2人進行座談,求2人均為男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)

討論的單調性;

的極值點,且曲線在兩點 處的切線相互平行,這兩條切線在軸上的截距分別為,求的取值范圍

查看答案和解析>>

同步練習冊答案