A. | 90° | B. | 60° | C. | 45° | D. | 30° |
分析 以直線a所在直線為x軸,以直線c所在直線為y軸,以直線b所在直線為z軸,建立空間直角坐標(biāo)系,建立空間直角坐標(biāo)系,利用向量法能求出l與b的夾角.
解答 解:∵直線a⊥直線b,b⊥直線c,c⊥a,
∴假設(shè)a,b,c交于點(diǎn)O,且兩兩垂直,
以直線a所在直線為x軸,以直線c所在直線為y軸,
以直線b所在直線為z軸,建立空間直角坐標(biāo)系,建立空間直角坐標(biāo)系,
在直線l上取一點(diǎn)H(x,y,z),
∵直線l與a,b所成的角分別為45°,60°,
∴x=cos60°$\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}$,y=cos45°$\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}$,
∴${x}^{2}+{y}^{2}=\frac{3}{4}({x}^{2}+{y}^{2}+{z}^{2})$,
∴z${\;}^{2}=\frac{1}{4}({x}^{2}+{y}^{2}+{z}^{2})$,
∴z=cos60°$\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}$,
∴l(xiāng)與b的夾角為60°.
故選:B.
點(diǎn)評 本題考查異面直線所成角的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 48 | C. | 66 | D. | 132 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ②④ | B. | ①④ | C. | ②③ | D. | ①③ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com