10.在區(qū)間[0,6]上隨機取一實數(shù)x,則該實數(shù)x滿足不等式1≤log2x≤2的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 根據(jù)幾何概型的公式,利用事件對應(yīng)區(qū)間長度比求概率即可.

解答 解:解不等式1≤log2x≤2,可得2≤x≤4,
∴在區(qū)間[0,6]上隨機取一實數(shù)x,該實數(shù)x滿足不等式1≤log2x≤2的概率為$\frac{4-2}{6-0}=\frac{1}{3}$;
故選B.

點評 本題考查了幾何概型的概率求法;利用事件對應(yīng)區(qū)間長度比求概率是解答本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.將圓x2+y2-2x=0向左平移一個單位長度,再把所得曲線上每一點的縱坐標保持不變,橫坐標變?yōu)樵瓉淼?\sqrt{3}$倍得到曲線C.
(1)寫出曲線C的參數(shù)方程;
(2)以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知直線l的極坐標方程為ρsin(θ+$\frac{π}{4}$)=$\frac{3\sqrt{2}}{2}$,若A,B分別為曲線C及直線l上的動點,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)$f(x)=5+lnx-\frac{kx}{x+1}$(k∈R).
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若k∈N*,且當x∈(1,+∞)時,f(x)>0恒成立,求k的最大值.($ln(3+2\sqrt{2})≈1.76$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知實數(shù)x,y滿足條件$\left\{\begin{array}{l}x≥2\\ x+y≤4\\ 2x-y-m≤0\end{array}\right.$,若目標函數(shù)z=2x+y的最大值為7,則m的最小值為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.一個幾何體的三視圖如圖所示,則該幾何體的體積等于( 。
A.72B.48C.24D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在等差數(shù)列{an}中,a1=-2017,其前n項和為Sn,若$\frac{{{S_{10}}}}{10}-\frac{S_8}{8}=2$,則S2017的值等于-2017.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍,為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中,中年職工抽到36人,則該樣本中的青年職工抽取到的人數(shù)為32.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知等差數(shù)列{an}中,a1+a9=-4,a1+a13=-8,等比數(shù)列{bn}中,b5=a5,b7=a7,那么b15的值為( 。
A.64B.-64C.128D.-128

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.口袋中有6個大小相同的小球,其中1個小球標有數(shù)字“3”,2個小球標有數(shù)字“2”,3個小球標有數(shù)字“1”,每次從中任取一個小球,取后放回,連續(xù)抽取兩次.
(I)求兩次取出的小球所標數(shù)字不同的概率;
(II)記兩次取出的小球所標數(shù)字之和為ξ,求ξ的分布列和期望.

查看答案和解析>>

同步練習冊答案