設(shè)x=
1
3+2
2
,y=3-
2
,集合M={m|m=a+b
2
,a∈Q,b∈Q},那么x,y與集合M的關(guān)系為
 
考點:集合的包含關(guān)系判斷及應(yīng)用
專題:計算題,集合
分析:由題意,x=
1
3+2
2
=3-2
2
,即a=3,b=-2,y=3-
2
,即a=3,b=-1,從而可判斷x,y與集合M的關(guān)系.
解答: 解:x=
1
3+2
2
=3-2
2
,即a=3,b=-2,
y=3-
2
,即a=3,b=-1,
故x∈M,y∈M,
故答案為:x∈M,y∈M.
點評:本題考查了元素與集合的關(guān)系的判斷與分母有理化,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在[-6,6]上的偶函數(shù),且f(4)>f(1),則下列各式一定成立的是( 。
A、f(0)<f(6)
B、f(4)>f(3)
C、f(2)>f(0)
D、f(-1)<f(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn=2an-2,數(shù)列{bn}是首項為a1,公差不為零的等差數(shù)列,且b1,b3,b11成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)設(shè)數(shù)列{cn}滿足cn=
1
bnbn+1
,前n項和為Pn,對于?n∈N*不等式 Pn<t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的焦點與雙曲線
y2
3
-x2=1的頂點重合,橢圓C的長軸長為4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若已知直線y=x+m,當(dāng)m為何值時,直線y=x+m與橢圓C有公共點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程|2x-1|+
2k+1
|2x-1|
=3k+2有三個不同的實數(shù)解,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A、B分別為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右頂點,(1,
3
2
)為橢圓上一點,橢圓的長半軸的長等于焦距.
(1)求橢圓的方程;
(2)設(shè)P(4,x),(x≠0),若直線AP,BP分別與橢圓相交于異于A、B的點M,N,證明點B在以MN為直徑的圓內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知扇形的周長為10cm,面積為6cm2,求扇形的圓心角的弧度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=5sin(
k
3
x+
π
3
),
(1)若周期為3π,求k的值;
(2)若周期不大于1,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-1,0),B是圓C:(x-1)2+y2=16上一動點,線段AB的垂直平分線交BC于點P.
(1)求動點P的軌跡E的方程;
(2)若過點A(-1,0)的直線L交軌跡E于M、N兩點,滿足
OM
ON
=-2,求直線L的方程.

查看答案和解析>>

同步練習(xí)冊答案