【題目】在直角坐標(biāo)系xoy中,直l線l的參數(shù)方程為 (t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=10cosθ.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(2,6),求|PA|+|PB|.

【答案】
(1)解:由ρ=10cosθ得ρ2=10ρcosθ,

∴直角坐標(biāo)方程為:x2+y2=10x,配方為:(x﹣5)2+y2=25


(2)解:將l的參數(shù)方程代入圓C的直角坐標(biāo)方程,化為 =0,

由于△= ﹣4×20=82>0,可設(shè)t1,t2是上述方程的兩個(gè)實(shí)根.

∴t1+t2=﹣ ,t1t2=20,又直線l過點(diǎn)P(2,6),

可得:|PA|+|PB|=|t1|+|t2|=﹣(t1+t2)=9


【解析】(1)由ρ=10cosθ得ρ2=10ρcosθ,把 代入即可得出.(2)將l的參數(shù)方程代入圓C的直角坐標(biāo)方程,化為 =0,可設(shè)t1,t2是上述方程的兩個(gè)實(shí)根.利用|PA|+|PB|=|t1|+|t2|=﹣(t1+t2)即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次,某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2 , 該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:

ξ

0

2

3

4

5

p

0.03

0.24

0.01

0.48

0.24


(1)求q2的值;
(2)求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ;
(3)試比較該同學(xué)選擇都在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),隨機(jī)抽取了6個(gè)試銷售數(shù)據(jù),得到第i個(gè)銷售單價(jià)xi(單位:元)與銷售yi(單位:件)的數(shù)據(jù)資料,算得
(1)求回歸直線方程 ;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤=銷售收入﹣成本)
附:回歸直線方程 中, = , = ,其中 , 是樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,記拋物線y=x﹣x2與x軸所圍成的平面區(qū)域?yàn)镸,該拋物線與直線y=kx(k>0)所圍成的平面區(qū)域?yàn)镹,向區(qū)域M內(nèi)隨機(jī)拋擲一點(diǎn)P,若點(diǎn)P落在區(qū)域N內(nèi)的概率為 ,則k的值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接今年6月6日的“全國愛眼日”,某高中學(xué)校學(xué)生會(huì)隨機(jī)抽取16名學(xué)生,經(jīng)校 醫(yī)用對數(shù)視力表檢查得到每個(gè)學(xué)生的視力狀況的莖葉圖(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉)如右圖,若視力測試結(jié)果不低于5.0,則稱為“好視力”,
(1)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)求從這16人中隨機(jī)選取3人,至少有2人是“好視力”的概率;
(3)以這16人的樣本數(shù)據(jù)來估計(jì)整個(gè)學(xué)校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記X表示抽到“好視力”學(xué)生的人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2﹣x),當(dāng)x∈[﹣2,0]時(shí),f(x)=( x﹣1,若在區(qū)間(﹣2,6)內(nèi)關(guān)于x的方程f(x)﹣log a(x+2)=0,恰有4個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a(a>0,a≠1)的取值范圍是( )
A.( ,1)
B.(1,4)
C.(1,8)
D.(8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在Rt△AOB中,AO=1,BO=2,如圖,動(dòng)點(diǎn)P是在以O(shè)點(diǎn)為圓心,OB為半徑的扇形內(nèi)運(yùn)動(dòng)(含邊界)且∠BOC=90°;設(shè) ,則x+y的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)求函數(shù) 的單調(diào)區(qū)間;
(2)若函數(shù) 在區(qū)間 上的最小值為0,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1 , a14=b4
(1)求{an}的通項(xiàng)公式;
(2)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案