12.已知f(x)=x2-x+c,|x-a|<1,求證:|f(x)-f(a)|<2(|a|+1).

分析 先利用函數(shù)f(x)的解析式,代入左邊的式子|f(x)-f(a)|中,再根據(jù)|f(x)-f(a)|=|x2-x-a2+a|=|x-a|•|x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|<1+|2a|+1,進(jìn)行放縮即可證得結(jié)果.

解答 證明:∵f(x)=x2-x+c,|x-a|<1,
∴|f(x)-f(a)|=|x2-a2+a-x|=|(x-a)(x+a-1)|
=|x-a||x+a-1|<|x+a-1|=|(x-a)+2a-1|≤|x-a|+|2a|+1<|2a|+2
=2(|a|+1).
∴|f(x)-f(a)|<2(|a|+1).

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的性質(zhì),用放縮法證明不等式,體現(xiàn)了化歸的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.過(guò)點(diǎn)P(-2,1)引拋物線y2=4x的兩條切線,切點(diǎn)分別為A,B,F(xiàn)是拋物線y2=4x的焦點(diǎn),則直線PF與直線AB的斜率之和為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知平面向量$\vec a$,$\vec b$夾角為$\frac{π}{3}$,|$\vec a$-$\vec b}$|=|${\vec b}$|=3,則|m$\vec a$+$\frac{1-m}{2}$$\vec b}$|(m∈R)的最小值$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=2tan(2x+$\frac{π}{6}$)的最小正周期是( 。
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對(duì)應(yīng)值如表:
x-$\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$$\frac{4π}{3}$$\frac{11π}{6}$$\frac{7π}{3}$$\frac{17π}{6}$
y-1131-113
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個(gè)解析式;
(2)根據(jù)(1)的結(jié)果:
( i)當(dāng)x∈[0,$\frac{π}{3}$]時(shí),方程f(3x)=m恰有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍;
( ii)若α,β是銳角三角形的兩個(gè)內(nèi)角,試比較f(sinα)與f(cosβ)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,AB=2,SA=SB=SC=2,則該三棱錐的外接球的表面積為( 。
A.$\frac{16}{3}π$B.$\frac{{4\sqrt{3}}}{3}π$C.$\frac{4}{3}π$D.$\frac{8}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥面ABCD,E為PD的中點(diǎn).
(1)求證:PB∥平面AEC;
(2)設(shè)AP=1,AD=2,∠ABC=60°,求點(diǎn)A到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=(x-2)2+alnx.
(1)若a=-6,求f(x)的單調(diào)區(qū)間;
(2)若f(x)存在兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求證:$\frac{f({x}_{1})}{{x}_{2}}$≥2(1-e${\;}^{-\frac{1}{2}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.平面a截半徑為R的球O得到一個(gè)半徑為$\frac{{\sqrt{3}R}}{2}$的截面圓O′,三棱錐S-ABC內(nèi)接于球O,且△ABC是圓O′的內(nèi)接正三角形,若O′S=R,則三棱錐S-ABC與球O的體積之比為$\frac{{9\sqrt{3}}}{256π}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案