已知圓的方程為x2+y2+ax+2y+a2=0,一定點為A(1,2),要使過定點A(1,2)作圓的切線有兩條,求a的取值范圍.
【答案】分析:圓的方程化為標(biāo)準(zhǔn)方程,求出圓心和半徑,過定點A(1,2)作圓的切線有兩條,點A必在圓外,推出不等式,然后解答不等式即可.
解答:解:將圓的方程配方得(x+2+(y+1)2=,圓心C的坐標(biāo)為(-,-1),半徑r=
條件是4-3a2>0,過點A(1,2)所作圓的切線有兩條,則點A必在圓外,即
化簡得a2+a+9>0.
由4-3a2>0,a2+a+9>0,
解之得-<a<,
a∈R.
∴-<a<
故a的取值范圍是(-,).
點評:本題考查圓的切線方程,直線和圓的方程的應(yīng)用,考查一元二次不等式的解法,邏輯思維能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為x2+y2-6x-8y=0,設(shè)該圓過點(3,5)的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為(  )
A、10
6
B、20
6
C、30
6
D、40
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3、已知圓的方程為x2+y2-2x+6y+8=0,那么該圓的一條直徑所在直線的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為x2+y2-6x-8y=0.設(shè)該圓過點(3,5)的兩條弦分別為AC和BD,且AC⊥BD.則四邊形ABCD的面積最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為x2+y2=4,過點M(2,4)作圓的兩條切線,切點分別為A1、A2,直線A1A2恰好經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點和上頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線x=-1與橢圓相交于A、B兩點,P是橢圓上異于A、B的任意一點,直線AP、BP分別交定直線l:x=-4于兩點Q、R,求證
OQ
OR
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為x2+y2+2x-4y-4=0,求經(jīng)過點(4,-1)的該圓的切線方程.

查看答案和解析>>

同步練習(xí)冊答案