【題目】如圖,四棱錐中,底面是邊長為4的正方形,側(cè)面為正三角形且二面角

(Ⅰ)設(shè)側(cè)面的交線為,求證:;

(Ⅱ)設(shè)底邊與側(cè)面所成角的為,求的值.

【答案】(Ⅰ)證明見解析;(Ⅱ).

【解析】試題分析:(1)通過得到側(cè)面,再通過線面平行性質(zhì)定理可得結(jié)論;(2)取中點、中點,連、,根據(jù)二面角定義可得,以為原點,軸,軸,如圖建立右手空間直角坐標(biāo)系,求出平面的法向量,根據(jù) 可得結(jié)果.

試題解析:(1)因為,所以側(cè)面

又因為側(cè)面的交線為,所以

(2)

中點、中點,連、,

、

所以是側(cè)面與底面成二面角的平面角.

從而

,則底面

因為,

所以

為原點,軸,軸,如圖建立右手空間直角坐標(biāo)系.

,

設(shè)是平面的法向量,

,.取

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,分別為,的中點,,如圖1.以為折痕將折起,使點到達點的位置,如圖2.

如圖1 如圖2

(1)證明:平面平面;

(2)若平面平面,求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題14分)

如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD平面ABCD,PAPD,PA=PDE,F分別為AD,PB的中點.

(Ⅰ)求證:PEBC

(Ⅱ)求證:平面PAB平面PCD;

(Ⅲ)求證:EF平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)滿足以下三個條件:

①對任意實數(shù),都有;

在區(qū)間上為增函數(shù).

1)判斷函數(shù)的奇偶性,并加以證明;

2)求證:;

3)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車“定速巡航”技術(shù)是用于控制汽車的定速行駛,當(dāng)汽車被設(shè)定為定速巡航狀態(tài)時,電腦根據(jù)道路狀況和汽車的行駛阻力自動控制供油量,使汽車始終保持在所設(shè)定的車速行駛,而無需司機操縱油門,從而減輕疲勞,促進安全,節(jié)省燃料.某汽車公司為測量某型號汽車定速巡航狀態(tài)下的油耗情況,選擇一段長度為240km的平坦高速路段進行測試.經(jīng)多次測試得到一輛汽車每小時耗油量F(單位:L)與速度v(單位:km/h)()的下列數(shù)據(jù):

v

0

40

60

80

120

F

0

10

20

為了描述汽車每小時耗油量與速度的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:

,,.

1)請選出你認(rèn)為最符合實際的函數(shù)模型,并求出相應(yīng)的函數(shù)解析式.

2)這輛車在該測試路段上以什么速度行駛才能使總耗油量最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,

①若曲線與直線相切,求的值;

②若曲線與直線有公共點,求的取值范圍.

(2)當(dāng)時,不等式對于任意正實數(shù)恒成立,當(dāng)取得最大值時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項和,則稱回歸數(shù)列

項和為的數(shù)列是否是回歸數(shù)列?并請說明理由.通項公式為的數(shù)列是否是回歸數(shù)列?并請說明理由;

)設(shè)是等差數(shù)列,首項,公差,若回歸數(shù)列,求的值.

)是否對任意的等差數(shù)列,總存在兩個回歸數(shù)列,使得成立,請給出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進一步的認(rèn)識,對于霧霾天氣的研究也漸漸活躍起來,某研究機構(gòu)對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進行統(tǒng)計分析,得出下表數(shù)據(jù):

x

4

5

7

8

y

2

3

5

6

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測燃放煙花爆竹的天數(shù)為的霧霾天數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓心在原點,半徑為R的圓交x軸正半軸于點A,P,Q是圓上的兩個動點,它們同時從點A出發(fā)沿圓周做勻速運動,點P沿逆時針方向每秒轉(zhuǎn),點Q沿順時針方向每秒轉(zhuǎn),試求PQ出發(fā)后第五次相遇時各自轉(zhuǎn)過的弧度數(shù)及各自走過的弧長.

查看答案和解析>>

同步練習(xí)冊答案