18.某化工廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料,生產(chǎn)1車皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如表所示:
ABC
483
5510
現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤(rùn)為2萬(wàn)元;生產(chǎn)1車品乙種肥料,產(chǎn)生的利潤(rùn)為3萬(wàn)元、分別用x,y表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(2)問(wèn)分別生產(chǎn)甲、乙兩種肥料,求出此最大利潤(rùn).

分析 (1)根據(jù)原料的噸數(shù)列出不等式組,作出平面區(qū)域;
(2)令利潤(rùn)z=2x+3y,則y=-$\frac{2}{3}x+\frac{z}{3}$,結(jié)合可行域找出最優(yōu)解的位置,列方程組解出最優(yōu)解.

解答 解:(1)x,y滿足的條件關(guān)系式為:$\left\{\begin{array}{l}{4x+5y≤200}\\{8x+5y≤360}\\{3x+10y≤300}\\{x∈N}\\{y∈N}\end{array}\right.$.
作出平面區(qū)域如圖所示:

(2)設(shè)利潤(rùn)為z萬(wàn)元,則z=2x+3y.
∴y=-$\frac{2}{3}$x+$\frac{z}{3}$.
∴當(dāng)直線y=-$\frac{2}{3}$x+$\frac{z}{3}$經(jīng)過(guò)點(diǎn)B時(shí),截距$\frac{z}{3}$最大,即z最大.
解方程組$\left\{\begin{array}{l}{4x+5y=200}\\{3x+10y=300}\end{array}\right.$得B(20,24).
∴z的最大值為2×20+3×24=112.
答:當(dāng)生產(chǎn)甲種肥料20車皮,乙種肥料24車皮時(shí),利潤(rùn)最大,最大利潤(rùn)為112萬(wàn)元.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線性規(guī)劃的應(yīng)用,抽象概括能力和計(jì)算求解能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若無(wú)窮數(shù)列{an}滿足:只要ap=aq(p,q∈N*),必有ap+1=aq+1,則稱{an}具有性質(zhì)P.
(1)若{an}具有性質(zhì)P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;
(2)若無(wú)窮數(shù)列{bn}是等差數(shù)列,無(wú)窮數(shù)列{cn}是公比為正數(shù)的等比數(shù)列,b1=c5=1;b5=c1=81,an=bn+cn,判斷{an}是否具有性質(zhì)P,并說(shuō)明理由;
(3)設(shè){bn}是無(wú)窮數(shù)列,已知an+1=bn+sinan(n∈N*),求證:“對(duì)任意a1,{an}都具有性質(zhì)P”的充要條件為“{bn}是常數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}的通項(xiàng)公式an=(-1)n(5n-3),n∈N*,求數(shù)列的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),函數(shù)f(x)=$\overrightarrow{m}$$•\overrightarrow{n}$+2016
(1)化簡(jiǎn)f(x)的解析式,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,已知f(A)=2018,a=4,△ABC的面積為4$\sqrt{3}$,試判定△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.i是虛數(shù)單位,復(fù)數(shù)z滿足(1+i)z=2,則z的實(shí)部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知(1+x)n=a0+a1x+a2x2+…+anxn,若a0+a1+a2+…+an=16.則自然數(shù)n等于( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,點(diǎn)列{An}、{Bn}分別在某銳角的兩邊上,且|AnAn+1|=|An+1An+2|,An≠An+1,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*,(P≠Q(mào)表示點(diǎn)P與Q不重合)若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( 。
A.{Sn}是等差數(shù)列B.{Sn2}是等差數(shù)列C.{dn}是等差數(shù)列D.{dn2}是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面為正方形,PD⊥平面ABCD,M為PC中點(diǎn).
(1)求證:AP∥平面MBD;
(2)若AD=PD,求直線PB與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=mlnx+x2+mx(m∈R).
(1)若函數(shù)f(x)的圖象所有點(diǎn)都在第一象限,求實(shí)數(shù)m的取值范圍;
(2)證明:對(duì)任意的實(shí)數(shù)m,存在x0∈(1,e),使f′(x0)=$\frac{f(e)-f(1)}{e-1}$(e是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案