3.已知(1+x)n=a0+a1x+a2x2+…+anxn,若a0+a1+a2+…+an=16.則自然數(shù)n等于(  )
A.6B.5C.4D.3

分析 在二項(xiàng)展開式中取x=1,可得2n=16,由此求得n的值.

解答 解:由(1+x)n=a0+a1x+a2x2+…+anxn
得a0+a1+a2+…+an=2n=16,解得n=4.
故選:C.

點(diǎn)評 本題考查二項(xiàng)式系數(shù)的性質(zhì),考查了代入法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.從一副52張的撲克牌中任取兩張,則這兩張牌的花色相同的概率是( 。
A.$\frac{4{C}_{13}^{2}}{{C}_{52}^{2}}$B.$\frac{{C}_{13}^{2}}{{C}_{52}^{2}}$C.$\frac{2}{52}$D.$\frac{13}{52}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對于任意的實(shí)數(shù)a,b,用max{a,b}表示a,b中的較大者,如果函數(shù)f(x)=max{2x,x2},那么${∫}_{0}^{5}$f(x)dx=$\frac{19}{ln2}$+$\frac{56}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(-∞,0)上單調(diào)遞增,若實(shí)數(shù)a滿足f(2|a-1|)>f(-$\sqrt{2}$),則a的取值范圍是( 。
A.(-∞,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)∪($\frac{3}{2}$,+∞)C.($\frac{1}{2}$,$\frac{3}{2}$)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某化工廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料,生產(chǎn)1車皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如表所示:
ABC
483
5510
現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為2萬元;生產(chǎn)1車品乙種肥料,產(chǎn)生的利潤為3萬元、分別用x,y表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)問分別生產(chǎn)甲、乙兩種肥料,求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,且8sin2$\frac{A+B}{2}$-2cos2C=7.
(1)求tanC的值;
(2)若c=$\sqrt{3}$,sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知平面α、β和直線a、b,若α∥β,a?α,b?β,則a、b的位置關(guān)系可能為平行或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若f(sinx)=cos2x,則f($\frac{\sqrt{3}}{2}$)等于( 。
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某職業(yè)學(xué)校有三個年級,共有1000名學(xué)生,其中一年級有350名,若從全校學(xué)生中任意選出一名學(xué)生,則恰好選到二年級學(xué)生的概率是0.32,現(xiàn)計(jì)劃利用分層抽樣的方法,從全體學(xué)生中選出100名參加座談會,那么需要從三年級學(xué)生中選出33名.

查看答案和解析>>

同步練習(xí)冊答案