【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,.
(1)求證:平面平面;
(2)過的平面交于點,若平面把四面體分成體積相等的兩部分,求二面角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)先證明面,再證明,最后得到平面平面.
(2)以,,為,,軸,建立如圖所示的空間直角坐標系,分別計算法向量,利用向量的夾角公式得到答案.
解:(1)證明:因為,則,又側(cè)面底面,
面面,面,則面
面,則又因為,為平行四邊形,
則,又,則為等邊三角形,則為菱形,則
又,則面,面,則面面
(2)由平面把四面體分成體積相等的兩部分,
則為中點,取中點,連接,由知
由(1)知平面,以,,為,,軸,建立如圖所示的空間直角坐標系,
則,,,,
則中點為
設(shè)面的法向量為,則,
可取
設(shè)面的法向量為,則,
可取
設(shè)二面角的大小為,則,
則二面角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】武漢又稱江城,是湖北省省會城市,被譽為中部地區(qū)中心城市,它不僅有著深厚的歷史積淀與豐富的民俗文化,更有著眾多名勝古跡與旅游景點,每年來武漢參觀旅游的人數(shù)不勝數(shù),其中黃鶴樓與東湖被稱為兩張名片為合理配置旅游資源,現(xiàn)對已游覽黃鶴樓景點的游客進行隨機問卷調(diào)查,若不游玩東湖記1分,若繼續(xù)游玩東湖記2分,每位游客選擇是否游覽東湖景點的概率均為,游客之間選擇意愿相互獨立.
(1)從游客中隨機抽取3人,記總得分為隨機變量,求的分布列與數(shù)學期望;
(2)(i)若從游客中隨機抽取人,記總分恰為分的概率為,求數(shù)列的前10項和;
(ⅱ)在對所有游客進行隨機問卷調(diào)查過程中,記已調(diào)查過的累計得分恰為分的概率為,探討與之間的關(guān)系,并求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)對定義域內(nèi)的每一個值,在其定義域內(nèi)都存在唯一的,使成立,則稱該函數(shù)為“依賴函數(shù)”.
(1)判斷函數(shù)是否為“依賴函數(shù)”,并說明理由;
(2)若函數(shù)在定義域上為“依賴函數(shù)”,求的取值范圍;
(3)已知函數(shù)在定義域上為“依賴函數(shù)”.若存在實數(shù),使得對任意的,不等式都成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的圓心的坐標為,且圓與直線:相切,過點的動直線與圓相交于,兩點,直線與直線的交點為.
(1)求圓的標準方程;
(2)求的最小值;
(3)問:是否是定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】年以來精準扶貧政策的落實,使我國扶貧工作有了新進展,貧困發(fā)生率由年底的下降到年底的,創(chuàng)造了人類減貧史上的的中國奇跡.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例,年至年我國貧困發(fā)生率的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
貧困發(fā)生率 | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)從表中所給的個貧困發(fā)生率數(shù)據(jù)中任選兩個,求兩個都低于的概率;
(2)設(shè)年份代碼,利用線性回歸方程,分析年至年貧困發(fā)生率與年份代碼的相關(guān)情況,并預測年貧困發(fā)生率.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
(的值保留到小數(shù)點后三位)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題;命題函數(shù)在區(qū)間上有零點.
(1)當時,若為真命題,求實數(shù)的取值范圍;
(2)若命題是命題的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 在點處的切線與直線平行,且函數(shù)有兩個零點.
(1)求實數(shù)的值和實數(shù)的取值范圍;
(2)記函數(shù)的兩個零點為,求證: (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com