18.(普通中學(xué)做)ABCD-A1B1C1D1是棱長為1的正方體,一個質(zhì)點(diǎn)從A出發(fā)沿正方體的面對角線運(yùn)動,每走完一條面對角線稱為“走完一段”,質(zhì)點(diǎn)的運(yùn)動規(guī)則如下:運(yùn)動第i段與第i+2所在直線必須是異面直線(其中i是正整數(shù)).問質(zhì)點(diǎn)從A點(diǎn)出發(fā)又回到起點(diǎn)A走完的段數(shù)是( 。
A.3B.4C.5D.6

分析 質(zhì)點(diǎn)的運(yùn)動規(guī)則不妨設(shè)質(zhì)點(diǎn)運(yùn)行路線為AB1→B1C→CD1→D1A,即走過4段后又回到起點(diǎn)A,可以看作以4為周期.

解答 解:不妨設(shè)質(zhì)點(diǎn)運(yùn)行路線為AB1→B1C→CD1→D1A
即走過4段后又回到起點(diǎn)A,可以看作以4為周期,
∴質(zhì)點(diǎn)從A點(diǎn)出發(fā)又回到起點(diǎn)A走完的段數(shù)是4段.
故選:B.

點(diǎn)評 本題考查質(zhì)點(diǎn)從A點(diǎn)出發(fā)又回到起點(diǎn)A走完的段數(shù)的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.從2,3,4,5,6這5個數(shù)字中任取3個,則所得3個數(shù)之和為偶數(shù)的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:cosα≠0是α≠2kπ(k∈Z)的充分必要條件,
命題q:設(shè)隨機(jī)變量ζ~N(0,1),若P(ξ≥$\frac{3}{2}$)=m,則P(-$\frac{3}{2}$<ξ<0)=$\frac{1}{2}$-m,
下列命題是假命題的為( 。
A.p∧qB.p∨qC.¬p∧qD.¬p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=$\frac{1}{2}$,an>0(n∈N),S3+a3,S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=3an+2n-7,Tn是數(shù)列{bn}的前n項(xiàng)和,求Tn及Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在如圖的正方體中,M、N分別為棱BC和棱CC′的中點(diǎn),則異面直線B′D′和MN所成的角為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.將函數(shù)$y=sinx+\sqrt{3}cosx(x∈R)$的圖象向左平移n(n>0)個長度單位后,所得到的圖象關(guān)于原點(diǎn)對稱,則n的最小值是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等差數(shù)列{an}的前n項(xiàng)和Sn滿足S3=6,S5=15.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{a_n}{{{2^{a_n}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x+1|-2|x-a|,a∈R,若f(x)的圖象與x軸圍成的三角形面積大于6,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在直三棱柱ABC-A1B1C1中,已知AB=AC,M,N,P分別為BC,CC1,BB1的中點(diǎn).求證:
(1)平面AMP⊥平面BB1C1C;
(2)A1N∥平面AMP.

查看答案和解析>>

同步練習(xí)冊答案