【題目】某廠為了評(píng)估某種零件生產(chǎn)過(guò)程的情況,制定如下規(guī)則:若零件的尺寸在,則該零件的質(zhì)量為優(yōu)秀,生產(chǎn)過(guò)程正常;若零件的尺寸在且不在,則該零件的質(zhì)量為良好,生產(chǎn)過(guò)程正常;若零件的尺寸在且不在,則該零件的質(zhì)量為合格,生產(chǎn)過(guò)程正常;若零件的尺寸不在,則該零件不合格,同時(shí)認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查,(其中為樣本平均數(shù),為樣本標(biāo)準(zhǔn)差)下面是檢驗(yàn)員從某一天生產(chǎn)的一批零件中隨機(jī)抽取的20個(gè)零件尺寸的莖葉圖(單位:cm)經(jīng)計(jì)算得,其中為抽取的第個(gè)零件的尺寸,.

1)利用該樣本數(shù)據(jù)判斷是否需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查;

2)利用該樣本,從質(zhì)量良好的零件中任意抽取兩個(gè),求抽取的兩個(gè)零件的尺寸均超過(guò)的概率;

3)剔除該樣本中不在的數(shù)據(jù),求剩下數(shù)據(jù)的平均數(shù)和標(biāo)準(zhǔn)差(精確到0.01)

參考數(shù)據(jù):,,,

【答案】(1)是;(2);(3)平均數(shù)和標(biāo)準(zhǔn)差

【解析】

1)根據(jù)所給數(shù)據(jù)求得,根據(jù),可得,即可求得答案;

2)因?yàn)?/span>,,可得質(zhì)量良好的零件有5個(gè),其中大于的有3個(gè),設(shè)為,小于的有2個(gè),結(jié)合條件,即可求得答案;

3)剔除樣本中不在的數(shù)據(jù)24.81,則剩下數(shù)據(jù)的,根據(jù)求得,即可求得答案.

1)根據(jù)所給數(shù)據(jù)求得,

,

,

,

需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查.

2,

質(zhì)量良好的零件有5個(gè),其中大于的有3個(gè),設(shè)為,小于的有2個(gè),

設(shè)為,

所有的可能性有10種,其中兩個(gè)零件的尺寸均超過(guò)的有,種,

從質(zhì)量良好的零件中任意抽取個(gè),其尺寸均超過(guò)的概率為;

3)剔除樣本中不在的數(shù)據(jù)24.81,

則剩下數(shù)據(jù)的,

剩下的數(shù)據(jù)的

剩下的數(shù)據(jù)的平均數(shù)和標(biāo)準(zhǔn)差

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在圓外,過(guò)點(diǎn)作圓的切線,設(shè)切點(diǎn)為.

(1)若點(diǎn)運(yùn)動(dòng)到處,求此時(shí)切線的方程;

(2)求滿足的點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,平面側(cè)面,且

(1)求證: ;

(2)若直線與平面所成的角為,請(qǐng)問(wèn)在線段上是否存在點(diǎn),使得二面角的大小為,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬(wàn)元)和銷售額(萬(wàn)元)數(shù)據(jù)如下:

(1)若用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

(2)用二次函數(shù)回歸模型擬合的關(guān)系,可得回歸方程: ,計(jì)算二次函數(shù)回歸模型和線性回歸模型的分別約為0.75和0.97,請(qǐng)用說(shuō)明選擇個(gè)回歸模型更合適,并用此模型預(yù)測(cè)超市廣告費(fèi)支出為8萬(wàn)元時(shí)的銷售額.

參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的公差d≠0,且a1,a3a13成等比數(shù)列,若a1=1,Sn為數(shù)列{an}的前n項(xiàng)和,則的最小值為(   。

A.4B.3C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在四棱錐P-ABCD中,底面ABCD是矩形,且,,平面ABCDE,F分別是線段ABBC的中點(diǎn).

1)證明:

2)點(diǎn)G在線段PA上,且平面PFD,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在棱錐P-ABCD中,PA平面ABCD,底面ABCD為直角梯形,PA=AD=DC=2,AB=4且ABCD,BAD=90°.

(1)求證:BCPC;

(2)PB與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班共有學(xué)生45人,其中女生18人,現(xiàn)用分層抽樣的方法,從男、女學(xué)生中各抽取若干學(xué)生進(jìn)行演講比賽,有關(guān)數(shù)據(jù)見(jiàn)下表(單位:人)

性別

學(xué)生人數(shù)

抽取人數(shù)

女生

18

男生

3

1)求

2)若從抽取的學(xué)生中再選2人做專題演講,求這2人都是男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),圓,定點(diǎn),點(diǎn)是圓上一動(dòng)點(diǎn),線段的垂直平分線交圓的半徑于點(diǎn),點(diǎn)的軌跡為.

(1)求曲線的方程;

(2)已知點(diǎn)是曲線上但不在坐標(biāo)軸上的任意一點(diǎn),曲線軸的焦點(diǎn)分別為,直線分別與軸相交于兩點(diǎn),請(qǐng)問(wèn)線段長(zhǎng)之積是否為定值?如果還請(qǐng)求出定值,如果不是請(qǐng)說(shuō)明理由;

(3)在(2)的條件下,若點(diǎn)坐標(biāo)為(-1,0),設(shè)過(guò)點(diǎn)的直線相交于兩點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案