5.若tanθ=3,則2sin2θ-sinθcosθ-cos2θ=$\frac{7}{5}$.

分析 根據(jù)題意,將平方關系代入化為齊次式,再由商的關系將式子轉化為關于tanθ式子,代入求值即可.

解答 解:∵tanθ=3,
∴2sin2θ-sinθcosθ-cos2θ=$\frac{2si{n}^{2}θ-sinθcosθ-co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$
=$\frac{2ta{n}^{2}θ-tanθ-1}{ta{n}^{2}θ+1}$
=$\frac{7}{5}$.
故答案為:$\frac{7}{5}$.

點評 本題考查了同角三角函數(shù)的基本關系的靈活應用,即“齊次化切”在求值中的應用,是?嫉念}型,注意總結.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.求函數(shù)f(x)=$\sqrt{m{x}^{2}+(m-3)x-3}$的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.解下列不等式:
(1)x2-2x-8≥0;
(2)x2-18x+32<0;
(3)x2+3x-54≤0;
(4)x2-4x+5>0;
(5)3x2+2x+1<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若直線m被兩平行線l1:x+y=0與l2:x+y+$\sqrt{6}$=0所截得的線段的長為2$\sqrt{3}$,則m的傾斜角可以是
①15°   ②45°  ③60°  ④105°⑤120°    ⑥165°
其中正確答案的序號是④或⑥.(寫出所有正確答案的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.求兩條平行直線4x-3y-1=0和8x-6y+1=0之間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)y=tanωx在$({-\frac{π}{2},\frac{π}{2}})$內是減函數(shù),則( 。
A.0<ω≤1B.ω≤-1C.ω≥1D.-1≤ω<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某單位為了了解用電量y度與氣溫x℃之間的關系,隨機統(tǒng)計了某4天的用電量與當天氣溫.
氣溫(℃)141286
用電量(度)22263438
(1)求線性回歸方程;($\sum_{n=1}^4{x_i}{y_i}=1120,\sum_{n=1}^4{x_i}^2=440$)
(2)根據(jù)(1)的回歸方程估計當氣溫為10℃時的用電量.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)$f(x)=sinx•cos(x-\frac{π}{6})+{cos^2}x-\frac{1}{2}$
(1)求函數(shù)f(x)的最大值,并寫出f(x)取最大值x時的取值集合;
(2)若$f({x_0})=\frac{11}{20},{x_0}∈[\frac{π}{6},\frac{π}{2}]$,求cos2x0的值;
(3)在△ABC中,角A、B、C的對邊分別為a,b,c,若$f(A)=\frac{1}{2},b+c=3$,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.(1)化簡:$\frac{sin(π-α)cos(3π-α)tan(-α-π)tan(α-2π)}{tan(4π-α)sin(5π+a)}$.
(2)若α、β為銳角,且$cos(α+β)=\frac{12}{13}$,$cos(2α+β)=\frac{3}{5}$,求cosα的值.

查看答案和解析>>

同步練習冊答案