6.已知函數(shù)f(x)是在定義(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y)且f(2)=1.試回答下列問(wèn)題:
(1)證明:f(8)=3;
(2)求不等式f(x)-f(x+2)>3的解集.

分析 (1)由已知利用賦值法及已知f(2)=1可求證明f(8).
(2)原不等式可化為f(x)>f(8x-16),結(jié)合f(x)是定義在(0,+∞)上的增函數(shù)可求不等式的解集.

解答 證明:(1)由題意f(xy)=f(x)+f(y)且f(2)=1.
可得f(8)=f(4×2)=f(4)+f(2)=f(2×2)+f(2)=3f(2)=3.
解:(2)函數(shù)f(x)是在定義(0,+∞)上的增函數(shù),
原不等式可化為f(x)>f(x-2)+3=f(x-2)+f(8)=f(8x-16),
∵f(x)是定義在(0,+∞)上的增函數(shù),
∴$\left\{\begin{array}{l}{8x-16>0}\\{x>8x-16}\end{array}\right.$,
解得:2<x<$\frac{16}{7}$.

點(diǎn)評(píng) 本題主要考查了利用賦值法求解抽象函數(shù)的函數(shù)值及利用函數(shù)的單調(diào)性求解不等式,解題的關(guān)鍵是熟練應(yīng)用函數(shù)的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在復(fù)平面內(nèi)O為極坐標(biāo)原點(diǎn),復(fù)數(shù)-1+2i與1+3i分別為對(duì)應(yīng)向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,則|$\overrightarrow{AB}$|=(  )
A.3B.$\sqrt{17}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知$cos(\frac{π}{4}+x)=\frac{1}{4}$,則sin2x的值為$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)解不等式|$\frac{1}{lo{g}_{\frac{1}{2}}x}$+2|≥$\frac{3}{2}$
(2)不等式0≤ax+5≤4的整數(shù)解是1、2、3、4,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若函數(shù)y=logax(0<a<1)在[2,4]上的最大值與最小值之差為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)集合$A=\{y|y={log_{\frac{1}{2}}}x,\frac{1}{8}≤x≤2\},B=\{x|y=\sqrt{{3^{x-a}}-1}\}$.
(1)若a=2,求A∩B;
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”,若已知f(x)=x2-2mx+m2-4為定義域R上的“局部奇函數(shù)”,則實(shí)數(shù)m的取值范圍是(  )
A.[0,2]B.(-2,2)C.[-2,2]D.[-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.用列舉法表示集合D={(x,y)|y=-x2+8,x∈N,y∈N}為{(0,8),(1,7),(2,4)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知橢圓$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1以及下面三個(gè)函數(shù)①f(x)=x;②f(x)=sinx;③f(x)=lgx.其中圖象能等分該橢圓面積的函數(shù)有(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案