【題目】以下對各事件發(fā)生的概率判斷正確的是(

A.甲、乙兩人玩剪刀、石頭、布的游戲,則玩一局甲不輸?shù)母怕适?/span>

B.1名男同學(xué)和2名女同學(xué)中任選2人參加社區(qū)服務(wù),則選中一男一女同學(xué)的概率為

C.將一個質(zhì)地均勻的正方體骰子(每個面上分別寫有數(shù)字1,23,45,6)先后拋擲2次,觀察向上的點(diǎn)數(shù),則點(diǎn)數(shù)之和是6的概率是

D.從三件正品、一件次品中隨機(jī)取出兩件,則取出的產(chǎn)品全是正品的概率是

【答案】BCD

【解析】

結(jié)合選項(xiàng),利用樹狀圖和列舉法,求得基本事件的總數(shù),利用古典概型的概率計(jì)算公式,逐項(xiàng)求解,即可求解.

對于A中, 甲、乙兩人玩剪刀、石頭、布的游戲,共有種情形,

結(jié)合樹狀圖,可得玩一局甲不輸?shù)那闆r,共有種情形,

所以玩一局甲不輸?shù)母怕适?/span>,所以A不正確;

對于B中,設(shè)1名男生為,兩名女生分別為

則從這3人中選取2人包含:,共3種選法,

其中選中一男一女同學(xué)包含:,

所以選中一男一女同學(xué)的概率為,所以B正確;

對于C中,將一個質(zhì)地均勻的正方體骰子,先后拋擲2次,共有36種不同的結(jié)果,

其中點(diǎn)數(shù)和為6的有:,共有5種,

所以點(diǎn)數(shù)之和是6的概率是,所以C正確;

對于D中,從三件正品、一件次品中隨機(jī)取出兩件,

則取出的產(chǎn)品全是正品的概率是,所以D是正確的.

故選:BCD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在實(shí)數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個實(shí)根,稱為的特征根.

1)討論函數(shù)的奇偶性,并說明理由;

2)求表達(dá)式;

3)把函數(shù),的最大值記作、最小值記作,令,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知遞增數(shù)列的前項(xiàng)和為,且滿足,.

1)求證:數(shù)列為等差數(shù)列;

2)試求所有的正整數(shù),使得為整數(shù);

3)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定一個項(xiàng)的實(shí)數(shù)列, , ,任意選取一個實(shí)數(shù),變換將數(shù)列 , , 變換為數(shù)列 , , ,再將得到的數(shù)列繼續(xù)實(shí)施這樣的變換,這樣的變換可以連續(xù)進(jìn)行多次,并且每次所選擇的實(shí)數(shù)可以不相同,第次變換記為,其中為第次變換時所選擇的實(shí)數(shù).如果通過次變換后,數(shù)列中的各項(xiàng)均為,則稱, , 為“次歸零變換”.

)對數(shù)列, , ,給出一個“次歸零變換”,其中

)對數(shù)列, , ,給出一個“次歸零變換”,其中

)證明:對任意項(xiàng)的實(shí)數(shù)列,都存在“次歸零變換”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,,其前項(xiàng)和滿足:.

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),求證:

3)設(shè)(為非零整數(shù),),是否存在確定的值,使得對任意,有恒成立.若存在求出的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三年級某班50名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,成績分組區(qū)間為:.其中成等差數(shù)列且

物理成績統(tǒng)計(jì)如表.(說明:數(shù)學(xué)滿分150分,物理滿分100分)

分組

頻數(shù)

6

9

20

10

5

1)根據(jù)頻率分布直方圖,請估計(jì)數(shù)學(xué)成績的平均分;

2)若數(shù)學(xué)成績不低于140分的為“優(yōu)”,物理成績不低于90分的為“優(yōu)”,已知本班中至少有一個“優(yōu)”的同學(xué)總數(shù)為6人,從數(shù)學(xué)成績?yōu)椤皟?yōu)”的同學(xué)中隨機(jī)抽取2人,求兩人恰好均為物理成績“優(yōu)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),,,,.

求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個單位,得到函數(shù)的圖象,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(0,-2),橢圓E (a>b>0)的離心率為F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).

(1)E的方程;

(2)設(shè)過點(diǎn)A的動直線lE相交于P,Q兩點(diǎn).當(dāng)OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, , ,且

1)證明:平面平面;

2)若求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊答案