4.若a-b=2016-c,則拋物線y=ax2+bx+c必定經(jīng)過的點是( 。
A.(-1,-2016)B.(1,2016)C.(-1,2016)D.(1,-2016)

分析 當x=-1時,y=a-b+c=2016,問題得以解決.

解答 解:∵a-b=2016-c,
∴a-b+c=2016
當x=-1時,y=a-b+c=2016,
∴拋物線y=ax2+bx+c必定經(jīng)過的點是(-1,2016),
故選:C.

點評 本題考查了二次函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若三點A(3,3),B(a,0),C(0,b)(其中a•b≠0)共線,則$\frac{1}{a}$+$\frac{1}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足cos$\frac{A}{2}$=$\frac{2\sqrt{5}}{5}$,$\overrightarrow{AB}•\overrightarrow{AC}$=3,b+c=6,則邊a=( 。
A.2$\sqrt{2}$B.2$\sqrt{3}$C.2$\sqrt{5}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+bx的圖象過點(-4n,0),且f′(0)=2n,(n∈N*).
(1)求f(x)的解析式;
(2)設(shè)數(shù)列{an}滿足an=f′(-n)•2n,求數(shù)列{an}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$c:\frac{y^2}{a^2}-\frac{x^2}{b^2}(a>0,b>0)$的漸近線方程為$y=±\frac{3}{4}x$,且其焦點為(0,5),則雙曲線C的方程( 。
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1B.$\frac{x^2}{16}-\frac{y^2}{9}=1$C.$\frac{x^2}{3}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}滿足an+1=$\frac{{a}_{n}-1}{{a}_{n}+1}$且a10=$\frac{1}{3}$,則{an}的前99項和為-$\frac{193}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線x+y+4=0被圓x2+y2+2x-2y+a=0所截得弦長為2,則實數(shù)a的值為( 。
A.-1B.-4C.-7D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓$\frac{x^2}{4}+\frac{y^2}{b^2}=1(0<b<2)$,左右焦點分別為F1,F(xiàn)2,過F1的直線l交橢圓于A,B兩點,若|BF2|+|AF2|的最大值為6,則b的值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù) y=a x-4+b (a>0,且 a≠1 )的圖象恒過定點( 4,6 ),則b=5.

查看答案和解析>>

同步練習(xí)冊答案