13.已知橢圓$\frac{x^2}{4}+\frac{y^2}{b^2}=1(0<b<2)$,左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F1的直線l交橢圓于A,B兩點(diǎn),若|BF2|+|AF2|的最大值為6,則b的值是$\sqrt{2}$.

分析 由題意可知橢圓是焦點(diǎn)在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8-|AB|,再由過(guò)橢圓焦點(diǎn)的弦中通徑的長(zhǎng)最短,可知當(dāng)AB垂直于x軸時(shí)|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8-|AB|,由|BF2|+|AF2|的最大值等于6列式求b的值.

解答 解:由0<b<2可知,焦點(diǎn)在x軸上,
∵過(guò)F1的直線l交橢圓于A,B兩點(diǎn),∴|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8
∴|BF2|+|AF2|=8-|AB|.
當(dāng)AB垂直x軸時(shí)|AB|最小,|BF2|+|AF2|值最大,
此時(shí)|AB|=b2,∴6=8-b2
解得b=$\sqrt{2}$,
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了直線與圓錐曲線的關(guān)系,考查了橢圓的定義,解答此題的關(guān)鍵是明確過(guò)橢圓焦點(diǎn)的弦中通徑的長(zhǎng)最短,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)y=kx2-4x-8在區(qū)間[4,16]上單調(diào)遞減,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若a-b=2016-c,則拋物線y=ax2+bx+c必定經(jīng)過(guò)的點(diǎn)是(  )
A.(-1,-2016)B.(1,2016)C.(-1,2016)D.(1,-2016)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知命題p:?x<0,-x2+x-4<0,則命題p的真假以及命題p的否定分別為( 。
A.真;¬p:?x<0,-x2+x-4>0B.真;¬p:?x<0,-x2+x-4≥0
C.假;¬p:?x<0,-x2+x-4>0D.假;¬p:?x<0,-x2+x-4≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若α為第四象限角,則$\sqrt{\frac{1+cosα}{1-cosα}}+\sqrt{\frac{1-cosα}{1+cosα}}$=(  )
A.$-\frac{2}{sinα}$B.$-\frac{2}{tanα}$C.$\frac{2}{{co{s}α}}$D.$-\frac{2}{sinαcosα}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an}滿足條件:a1=1,an+1=2an+1
(1)求數(shù)列an的通項(xiàng)公式
(2)令${c_n}=\frac{2^n}{{{a_n}•{a_{n+1}}}}$記Tn=c1+c2+c3+…+cn  求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<π)的一段圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在(-2π,2π)上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)y=f(x)是一次函數(shù),且[f(x)]2-3f(x)=4x2-10x+4,則f(x)=-2x+4或2x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知復(fù)數(shù)z滿足方程z•i=2-i,則$\overline z$在復(fù)平面上對(duì)應(yīng)點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案