分析 (1)當(dāng)n=1時(shí),a0a1+a0a1=${a}_{1}^{2}$;${a}_{2}^{2}$=2a0a2+2${a}_{1}^{2}$=2a0a2+$8{a}_{0}^{2}$,化簡(jiǎn)聯(lián)立即可解出.
(2)假設(shè)對(duì)n≤i,均有${a}_{n}={2}^{n}{a}_{0}$(n∈N),利用已知化簡(jiǎn)解出即可得出.
解答 解:(1)當(dāng)n=1時(shí),a0a1+a0a1=${a}_{1}^{2}$,可得a1=2a0,當(dāng)n=2時(shí),${a}_{2}^{2}$=2a0a2+2${a}_{1}^{2}$=2a0a2+$8{a}_{0}^{2}$,解得a2=4a0,解得:a0=1,a1=2.
(2)假設(shè)對(duì)n≤i,均有${a}_{n}={2}^{n}{a}_{0}$(n∈N),則當(dāng)n=i+1時(shí),${a}_{i+1}^{2}$=$\sum_{i=0}^{i+1}$${∁}_{i+1}^{k}{a}_{k}{a}_{i+1-k}$=2a0ai+1+2i+1${a}_{0}^{2}$(2i+1-2),∴$({a}_{i+1}-{2}^{i+1}{a}_{0})$$({a}_{i+1}+({2}^{i+1}-2){a}_{0})$=0.
解得ai+1=2i+1a0,綜上可得:均有${a}_{n}={2}^{n}{a}_{0}$(n∈N),
{an}為等比數(shù)列.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、遞推關(guān)系、數(shù)學(xué)歸納法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 一條直線 | B. | 一條拋物線 | C. | 一個(gè)圓 | D. | 一群孤立的點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com