12.已知n=${∫}_{1}^{e}\frac{6}{x}$dx,那么${({x^2}-\frac{1}{x})^n}$的展開式中的常數(shù)項(xiàng)為15.

分析 利用定積分求出n,再求出展開式通項(xiàng),令x的指數(shù)為0,即可求出展開式中的常數(shù)項(xiàng).

解答 解:n=${∫}_{1}^{e}\frac{6}{x}$dx=6lnx${|}_{1}^{e}$=6,
${({x^2}-\frac{1}{x})^n}$的展開式通項(xiàng)為Tr+1=${C}_{6}^{r}•(-1)^{r}•{x}^{6-3r}$,
令6-3r=0,則r=2,∴${({x^2}-\frac{1}{x})^n}$的展開式中的常數(shù)項(xiàng)為${C}_{6}^{2}$=15,
故答案為:15.

點(diǎn)評(píng) 本題考查展開式中的常數(shù)項(xiàng),考查二項(xiàng)式定理的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在極坐標(biāo)中,若等邊△ABC的兩個(gè)頂點(diǎn)是A(2,$\frac{π}{4}$)、B(2,$\frac{5π}{4}$),那么頂點(diǎn)C的坐標(biāo)可能是($2\sqrt{3}$,$\frac{3π}{4}$)或($2\sqrt{3}$,-$\frac{π}{4}$。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=cosωx-sinωx(ω>0)在(-$\frac{π}{2}$,$\frac{π}{2}$)上單調(diào)遞減,則ω的取值不可能為( 。
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線y=m(0<m<2)與函數(shù)f(x)=2sin(ωx+φ)(ω>0)的圖象相鄰的三個(gè)交點(diǎn)依次為A(1,m),B(5,m),C(7,m),則ω=(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知方程|x|+log2(y+1)=2,若對(duì)任意x∈[a,b](a,b∈Z),都存在唯一的y∈[0,3]使方程成立,且對(duì)任意y∈[0,3],都有x∈[a,b](a,b∈Z)使方程成立,則滿足條件的有序整數(shù)對(duì)(a,b)的個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在面積為$\sqrt{15}$的△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且c+bsinAtanB=4a+bcosA,sinA=2sinC,則a+c=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l過點(diǎn)(0,-1)且與拋物線y2=4x相交于P,Q兩點(diǎn),弦PQ的中點(diǎn)坐標(biāo)為(1,b),求此直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(cosB,cosA),$\overrightarrow{m}•\overrightarrow{n}$=sin2C,且A、B、C分別為△ABC的三邊a、b、c所對(duì)的角,S△ABC為△ABC的面積.
(1)求角C的大小;
(2)若sinA,sinC,sinB成等差數(shù)列,且$\overrightarrow{CA}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=$\frac{162\sqrt{3}}{{S}_{△ABC}}$,求△ABC的外接圓半徑R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.進(jìn)入高中后,我們將學(xué)習(xí)到-種新的數(shù)叫復(fù)數(shù),已知虛數(shù)單位i滿足i2=-1,由此得i3=-i,i4=1,i5=i4.i=i…,則(l+i)2012=-21006

查看答案和解析>>

同步練習(xí)冊(cè)答案