【題目】如圖,設(shè)橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且0,若過(guò) A,Q,F(xiàn)2三點(diǎn)的圓恰好與直線相切,過(guò)定點(diǎn) M(0,2)的直線與橢圓C交于G,H兩點(diǎn)(點(diǎn)G在點(diǎn)M,H之間).(Ⅰ)求橢圓C的方程;(Ⅱ)設(shè)直線的斜率,在x軸上是否存在點(diǎn)P(,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,請(qǐng)說(shuō)明理由;(Ⅲ)若實(shí)數(shù)滿足,求的取值范圍.
【答案】(1);(2);(3).
【解析】
試題(1)利用向量確定F1為F2Q中點(diǎn),設(shè)Q的坐標(biāo)為(-3c,0),因?yàn)锳Q⊥AF2,所以b2=3c×c=3c2,a2=4c×c=4c2,再由直線與圓相切得 解得c=1,利用橢圓基本量之間的關(guān)系求b;(2)假設(shè)存在,設(shè)方程,聯(lián)立方程組,消元后由判別式大于0可得出,又四邊形為菱形時(shí),對(duì)角線互相垂直,利用向量處理比較簡(jiǎn)單,,化簡(jiǎn)得(x1+x2)-2m+k2(x1+x2)+4k=0,再由 代入化簡(jiǎn)得:,
解得,利用均值不等式范圍;(3) 斜率存在時(shí)設(shè)直線方程,聯(lián)立消元,,再由,進(jìn)行坐標(biāo)運(yùn)算,代入化簡(jiǎn),分離k與,利用k的范圍求,注意驗(yàn)證斜率不存在時(shí)情況.
試題解析:(1)因?yàn)?/span>0,所以F1為F2Q中點(diǎn)
設(shè)Q的坐標(biāo)為(-3c,0),因?yàn)锳Q⊥AF2,所以b2=3c×c=3c2,a2=4c×c=4c2,
且過(guò)A,Q,F(xiàn)2三點(diǎn)的圓的圓心為F1(-c,0),半徑為2c.
因?yàn)樵搱A與直線L相切,所以 解得c=1,所以a=2,故所求橢圓方程為.(2)設(shè)L1的方程為y=kx+2(k>0)由得(3+4k2)x2+16kx+4=0,
由△>0,得 所以k>1/2,設(shè)G(x1,y1),H(x2,y2),則所以(x1-m,y1)+(x2-m,y2)=(x1+x2-2m,y1+y2)=(x1+x2-2m,k(x1+x2)+4)(x2-x1,y2-y1)=(x2-x1,k(x2-x1)),由于菱形對(duì)角線互相垂直,因此所以(x2-x1)[(x1+x2)-2m]+k(x2-x1)[k(x1+x2)+4]=0,故(x2-x1)[(x1+x2)-2m+k2(x1+x2)+4k]=0因?yàn)閗>0,所以x2-x1≠0所以(x1+x2)-2m+k2(x1+x2)+4k=0,即(1+k2)(x1+x2)+4k-2m=0,所以
,解得, 因?yàn)閗>0,所以故存在滿足題意的點(diǎn)P且m的取值范圍是.(3)①當(dāng)直線L1斜率存在時(shí),設(shè)直線L1方程為y=kx+2,代入橢圓方程,得(3+4k2)x2+16kx+4=0 , 由△>0,得,設(shè)G(x1,y1),H(x2,y2), 則,又,所以(x1,y1-2)=λ(x2,y2-2), 所以x1=λx2, 所以,∴ ∴,整理得 ,因?yàn)?/span>, 所以 ,解得又0<λ<1,所以 .②當(dāng)直線L1斜率不存在時(shí),直線L1的方程為x=0,
,,,所以 .綜上所述, .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,離心率為,點(diǎn)在橢圓上,且的周長(zhǎng)為.
(1)求橢圓的方程;
(2)已知過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)在直線上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列滿足,其中A,B是兩個(gè)確定的實(shí)數(shù),
(1)若,求的前n項(xiàng)和;
(2)證明:不是等比數(shù)列;
(3)若,數(shù)列中除去開始的兩項(xiàng)外,是否還有相等的兩項(xiàng),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,,四邊形ACEF為正方形,且平面平面ACEF.
(1)證明:;
(2)求平面BEF與平面BCF所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知為等邊三角形,為等腰直角三角形,.平面平面ABD,點(diǎn)E與點(diǎn)D在平面ABC的同側(cè),且,.點(diǎn)F為AD中點(diǎn),連接EF.
(1)求證:平面ABC;
(2)求證:平面平面ABD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓長(zhǎng)軸長(zhǎng)為短軸長(zhǎng)的兩倍,連結(jié)橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4,直線過(guò)點(diǎn),且與橢圓相交于另一點(diǎn).
(1)求橢圓的方程;
(2)若線段長(zhǎng)為,求直線的傾斜角;
(3)點(diǎn)在線段的垂直平分線上,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在斜三棱柱中,,側(cè)面是邊長(zhǎng)為4的菱形,,,、分別為、的中點(diǎn).
(1)求證:平面;
(2)若,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左頂點(diǎn)為,右焦點(diǎn)為,斜率為1的直線與橢圓交于,兩點(diǎn),且,其中為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)點(diǎn)且與直線平行的直線與橢圓交于,兩點(diǎn),若點(diǎn)滿足,且與橢圓的另一個(gè)交點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知非空集合是由一些函數(shù)組成,滿足如下性質(zhì):①對(duì)任意,均存在反函數(shù),且;②對(duì)任意,方程均有解;③對(duì)任意、,若函數(shù)為定義在上的一次函數(shù),則.
(1)若,,均在集合中,求證:函數(shù);
(2)若函數(shù)()在集合中,求實(shí)數(shù)的取值范圍;
(3)若集合中的函數(shù)均為定義在上的一次函數(shù),求證:存在一個(gè)實(shí)數(shù),使得對(duì)一切,均有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com