設(shè)變量x,y滿足
5x+2y-18≤0
2x-y≥0
x+y-3≥0
,若直線kx-y+2=0經(jīng)過(guò)該可行域,則k的最大值為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用k的幾何意義即可得到k的最值.
解答: 解:畫(huà)出可行域如圖,k為直線y=kx+2的斜率,直線過(guò)定點(diǎn)B(0,2),并且直線過(guò)可行域,要使k最大,
則直線需要過(guò)點(diǎn)A,
5x+2y-18=0
2x-y=0
,解得
x=2
y=4
,即A(2,4),
∴k的最大值為
4-2
2-0
=
2
2
=1
,
故答案為:1
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用以及直線斜率的計(jì)算,利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足
1+z
i
=1-z,則z的虛部為( 。
A、-1B、-iC、1D、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ex(x2+mx+1-2m),其中m∈R.
(Ⅰ)當(dāng)m=1時(shí),求函數(shù)y=f(x)單調(diào)遞增區(qū)間;
(Ⅱ)求證:對(duì)任意m∈R,函數(shù)y=f(x)的圖象在點(diǎn)(0,f(0))處的切線恒過(guò)定點(diǎn);
(Ⅲ)是否存在實(shí)數(shù)m的值,使得y=f(x)在(-∞,+∞)上有最大值或最小值,若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式ax2-|x+1|+3a≥0的解集為(-∞,+∞),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足線性約束條件
x+y≤3
x-y≥1
y≥0
,則目標(biāo)函數(shù)z=2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面區(qū)域M={(x,y)|
y≥x
x≥0
x+y≤2
}內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P取自圓x2+y2=1內(nèi)部的概率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某海軍編隊(duì)將進(jìn)行一次編隊(duì)配置科學(xué)試驗(yàn),要求2艘攻擊型核潛艇一前一后,3艘驅(qū)逐艦和3艘護(hù)衛(wèi)艦分列左右,每側(cè)3艘,同側(cè)不能都是同種艦艇,則艦艇分配方案的方法數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)若a=
1
0
(x-1)dx,b=
1
0
(ex-1)dx,c=
1
0
(sinx-1)dx,則( 。
A、a<b<c
B、b<c<a
C、c<a<b
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)z=x+y,其中x,y滿足
x+2y≥0
x-y≥0
0≤x≤k
,當(dāng)z的最大值為6時(shí),k的值為( 。
A、3B、4C、5D、6

查看答案和解析>>

同步練習(xí)冊(cè)答案