已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204625525461.png)
的前n項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204625540668.png)
,數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204625696478.png)
的前n項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204625712374.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204625743563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204625759608.png)
.
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204625774457.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204625696478.png)
的通項公式;
(2)設
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204625899367.png)
,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204625977234.png)
<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204625993210.png)
,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626008277.png)
的取值范圍。
(1)由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626024469.png)
當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626102435.png)
時,
當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626164357.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626195408.png)
又當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626102435.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626289895.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232046263671034.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626398191.png)
數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626414493.png)
項與等比數(shù)列,其首項為1,公比為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626429339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626445688.png)
…8分
(2)由(1)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204625899367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626507813.png)
…9分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232046265542045.png)
…11分
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626570540.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626601760.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626632821.png)
…13分
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626398191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626648525.png)
且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204626710422.png)
…14分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:填空題
已知正項組成的等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205945634464.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205945650357.png)
項的和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205945666320.png)
,那么
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205945681464.png)
最大值是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205105467481.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205105483297.png)
項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205105498376.png)
,并且滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205105514412.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205105545809.png)
.
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205105467481.png)
的通項公式;
(2)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205105576730.png)
,問是否存在正整數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205105608337.png)
,對一切正整數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205105483297.png)
,總有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205105654526.png)
?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204657473481.png)
滿足:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204657489431.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204657520605.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204657473481.png)
的前
n項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204657551388.png)
.
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204657629348.png)
及
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204657551388.png)
;
(2)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204657692503.png)
(
n![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204657707246.png)
N
*),求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204657723491.png)
的前
n項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204657754373.png)
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204312802480.png)
中,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204312833975.png)
,則稱數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204312802480.png)
為“凸數(shù)列”.
(Ⅰ)設數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204312802480.png)
為“凸數(shù)列”,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204313161555.png)
,試寫出該數(shù)列的前6項,并求出該6項之和;
(Ⅱ)在“凸數(shù)列”
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204312802480.png)
中,求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204313254793.png)
;
(Ⅲ)設
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204313270552.png)
,若數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204312802480.png)
為“凸數(shù)列”,求數(shù)列前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204313379297.png)
項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204313395388.png)
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分) 已知等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204541330465.png)
的前n項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204541361399.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204541377453.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204541392609.png)
.
(Ⅰ)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204541330465.png)
的通項
;
(Ⅱ)設
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204541470834.png)
,求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204541486473.png)
的前n項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204541517365.png)
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203933309480.png)
是一個等差數(shù)列,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203933403579.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203933309480.png)
的通項公式;
(2)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203933309480.png)
前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203933465297.png)
項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203933481388.png)
的最大值。
查看答案和解析>>