【題目】已知過拋物線y2=4x焦點(diǎn)F的直線l交拋物線于A、B兩點(diǎn)(點(diǎn)A在第一象限),若 =3 ,則直線l的方程為( )
A.x﹣2y﹣1=0
B.2x﹣y﹣2=0
C.x﹣ y﹣1=0
D. x﹣y﹣ =0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等比數(shù)列,前n項(xiàng)和為Sn(n∈N*),且 ﹣ = ,S6=63.
(1)求{an}的通項(xiàng)公式;
(2)若對任意的n∈N* , bn是log2an和log2an+1的等差中項(xiàng),求數(shù)列{(﹣1)n bn2}的前2n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有某高新技術(shù)企業(yè)年研發(fā)費(fèi)用投入(百萬元)與企業(yè)年利潤(百萬元)之間具有線性相關(guān)關(guān)系,近5年的年科研費(fèi)用和年利潤具體數(shù)據(jù)如下表:
年科研費(fèi)用(百萬元) | 1 | 2 | 3 | 4 | 5 |
企業(yè)所獲利潤(百萬元) | 2 | 3 | 4 | 4 | 7 |
(1)畫出散點(diǎn)圖;
(2)求對的回歸直線方程;
(3)如果該企業(yè)某年研發(fā)費(fèi)用投入8百萬元,預(yù)測該企業(yè)獲得年利潤為多少?
參考公式:用最小二乘法求回歸方程的系數(shù)計(jì)算公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b為非零向量,|b|=2|a|,兩組向量x1,x2,x3,x4和y1,y2,y3,y4均由2個(gè)a和2個(gè)b排列而成.若x1·y1+x2·y2+x3·y3+x4·y4所有可能取值中的最小值為4|a|2,則a與b的夾角為( )
A. B. C. D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知橢圓兩個(gè)焦點(diǎn)的坐標(biāo)分別是, ,并且經(jīng)過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2) 已知是橢圓的左頂點(diǎn),斜率為的直線交橢圓于, 兩點(diǎn),
點(diǎn)在上, , ,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: (a>b>0)的左焦點(diǎn)F1與拋物線y2=﹣4x的焦點(diǎn)重合,橢圓E的離心率為 ,過點(diǎn)M(m,0)(m> )做斜率存在且不為0的直線l,交橢圓E于A,C兩點(diǎn),點(diǎn)P( ,0),且 為定值.
(1)求橢圓E的方程;
(2)過點(diǎn)M且垂直于l的直線與橢圓E交于B,D兩點(diǎn),求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進(jìn)一步的認(rèn)識(shí),對于霧霾天氣的研究也漸漸活躍起來,某研究機(jī)構(gòu)對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進(jìn)行統(tǒng)計(jì)分析,得出下表數(shù)據(jù).
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測燃放煙花爆竹的天數(shù)為9的霧霾天數(shù).
(相關(guān)公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*),在數(shù)列{bn}中,b1=1,點(diǎn)P(bn,bn+1)在直線x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記Tn=a1b1+a2b2+ +anbn,求Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com