已知一個幾何體的三視圖如下圖,大致畫出它的直觀圖,并求出它的表面積和體積.
分析:由三視圖可以知道,此幾何體是一個直四棱柱,其體積可以用梯形的面積乘以高來求,四個側(cè)面都是矩形,其底面是一個直角梯形,故可以根據(jù)三視圖求出相應的邊長,利用面積公式與體積公式求值即可.
解答:解:幾何體是一個以直角梯形為底面的直四棱柱.
由三視圖得:此棱柱的高是1,底面直角梯形的兩個底邊長分別為1與2,垂直于底邊的腰長度是1,
故與底邊不垂直的腰的長度為
2

所以體積V=S梯形h=
1
2
(1+2)×1×1=
3
2
(cm3)
,
表面積S表面=2S+S側(cè)面=
1
2
(1+2)×1×2+(1+1+2+
2
)×1=7+
2
(cm2)
點評:本題考點是由三視圖求面積與體積,本題主要考查根據(jù)三視圖的作圖規(guī)則還原實物圖的能力,三視圖的作圖規(guī)則是主視圖與俯視圖長對正,主視圖與側(cè)視圖高平齊,側(cè)視圖與俯視圖是寬相等,本題是考查利用三視圖的作圖規(guī)則把三視圖中的數(shù)據(jù)還原到原始圖形中來,求面積與體積,做題時要注意正確利用三視圖中所提供的信息,正確地得出實物圖的長寬高等數(shù)據(jù).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知一個幾何體的三視圖如所示,則該幾何體的體積為( 。
A、4B、2C、1D、2.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
精英家教網(wǎng)
A、2
B、4
C、
2
3
D、
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個幾何體的三視圖如圖所示,根據(jù)圖中標出的尺寸(單位:cm),可得幾何體的體積是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個幾何體的三視圖如圖所示.
(1)求此幾何體的表面積;
(2)如果點P,Q在正視圖中所示位置:P為所在線段中點,Q為頂點,求在幾何體表面上,從P點到Q點的最短路徑的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•河東區(qū)二模)已知一個幾何體的三視圖如圖所示,則此幾何體的體積是
7
3
πa3
7
3
πa3
(圓半徑為a).

查看答案和解析>>

同步練習冊答案