(選做題)如圖:已知AC=BD,過(guò)C點(diǎn)的圓的切線與BA的延長(zhǎng)線E點(diǎn),若∠ACE=40°,則∠BCD=________.

40°
分析:根據(jù)相等的弧所對(duì)的圓周角相等,得到∠ABC=∠BCD.再用弦切角定理可得∠ACE=∠ABC,所以∠BCD=∠ACE=40°.
解答:∵圓中,AC=BD,
∴弧AC=弧BD,可得∠ABC=∠BCD
又∵CE與圓相切于點(diǎn)C
∴∠ACE=∠ABC
∴∠BCD=∠ACE=40°
故答案為:40°
點(diǎn)評(píng):本題給出圓中相等的弦和弦切角,要我們求角的大小,著重考查了圓周角定理和弦切角的知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、(幾何證明選做題)如圖,已知:△ABC內(nèi)接于圓O,點(diǎn)D在OC的延長(zhǎng)線上,AD是圓O的切線,若∠B=30°,AC=2,則OD的長(zhǎng)為
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是
{x|x≥6或x≤-4}
{x|x≥6或x≤-4}

B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是
(1,
2
(1,
2

C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線上一點(diǎn),且DF=CF=2
2
,BE=1,BF=2,若CE與圓相切,則線段CE的長(zhǎng)為
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河西區(qū)一模)(幾何證明選做題)如圖,已知P是⊙O外一點(diǎn),PD為⊙O的切線,D為切點(diǎn),割線PEF經(jīng)過(guò)圓心O,若PF=12,PD=4
3
,則⊙O的半徑長(zhǎng)為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣州模擬)(幾何證明選講選做題)
如圖,已知:△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長(zhǎng)線上,AD是⊙O的切線,若∠B=30°,AC=1,則AD的長(zhǎng)為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•深圳二模)(幾何證明選講選做題)如圖,已知EB是半圓O的直徑,A是BE延長(zhǎng)線上一點(diǎn),AC切半圓O于點(diǎn)D,BC⊥AC于C,DF⊥EB于點(diǎn)F,若BC=6,AC=8,則DF=
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案