18.(1)化簡$\frac{{cos(α-\frac{π}{2})}}{{sin(\frac{5π}{2}+α)}}$•sin(α-2π)•cos(2π-α)
(2)求值sin$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan(-$\frac{25π}{4}$).

分析 (1)直接利用誘導公式化簡求解即可.
(2)利用誘導公式化簡,然后通過特殊角的三角函數(shù)求解即可.

解答 解:(1)原式=$\frac{sinα}{cosα}•sinα•cosα={sin^2}α$.
(2)sin$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan(-$\frac{25π}{4}$)=sin$\frac{π}{6}$+cos$\frac{π}{3}$-tan$\frac{π}{4}$=$\frac{1}{2}+\frac{1}{2}-1$=0.

點評 本題考查誘導公式的應用,特殊角的三角函數(shù)值的求法,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=x2-2x,則函數(shù)f(x+1)=x2-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.讀如圖的流程圖,若輸入的值為-5時,輸出的結(jié)果是( 。
A.2B.-10C.4D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知單位向量$\overrightarrow{a}$,$\overrightarrow$夾角為銳角,對t∈R,|$\overrightarrow{a}$-t$\overrightarrow$|的取值范圍是[$\frac{\sqrt{3}}{2}$,+∞),若向量$\overrightarrow{c}$滿足($\overrightarrow{c}$-2$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=0,則|$\overrightarrow{c}$|的最小值為$\frac{\sqrt{7}-\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知實數(shù)a滿足不等式|a+2|<2,解關(guān)于x的不等式(ax+1)(x-1)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.用數(shù)學歸納法證明不等式1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{{{2^n}-1}}$>$\frac{n}{2}$(n∈N*),則n=k+1與n=k相比,不等式左邊增加的項數(shù)是( 。
A.1B.k-1C.kD.2k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.直線$\left\{\begin{array}{l}x=-2-tcos{30°}\\ y=3+tsin{30°}\end{array}\right.$(t為參數(shù))的傾斜角θ等于( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知$\overrightarrow{m}$=(1,1),$\overrightarrow{m}$•$\overrightarrow{n}$=-1,且$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{3π}{4}$,
(1)求$\overrightarrow{n}$;
(2)若$\overrightarrow{q}$=(1,0),且$\overrightarrow{n}$與$\overrightarrow{q}$的夾角為$\frac{π}{2}$,$\overrightarrow{p}$=(cosA,1+cosC),其中A、B、C為△ABC的內(nèi)角,A、B、C依次成等差數(shù)列,求|$\overrightarrow{n}$+$\overrightarrow{p}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.甲、乙兩人做“石頭、剪刀、布”游戲,兩人平局的概率為( 。
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

查看答案和解析>>

同步練習冊答案