設(shè)數(shù)列{an}是等差數(shù)列,公差d>0,Sn為其前n項(xiàng)和,若正整數(shù)i,j,k,l滿足i<k<l<j,且i+j=k+l,則(  )
A、Si+Sj<Sk+Sl
B、Si+Sj>Sk+Sl
C、SiSj<SkSl
D、SiSj>SkSl
考點(diǎn):等差數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:由題意,i,k,l,j,不妨取1,2,3,4,利用等差數(shù)列的求和公式,即可得出結(jié)論.
解答: 解:由題意,i,k,l,j,不妨取1,2,3,4,則
S1+S4=a1+2(a1+a4)=5a1+6d,S2+S3=(a1+a2)+
3
2
(a1+a3)=5a1+4d,
∴Si+Sj>Sk+Sl,
故選:B.
點(diǎn)評(píng):本題考查等差數(shù)列的求和公式,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,對(duì)任意的n∈N*,都有Sn=(m+1)-man(m為正常數(shù))
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)數(shù)列{bn}滿足:b1=2a1,bn=
bn-1
1+bn-1
(n≥2,n∈N+),求數(shù)列{bn}的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列{
2n+1
bn
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
2
x

(1)當(dāng)a為何值時(shí),y=f(x)是奇函數(shù);
(2)證明:不論a為何值,y=f(x)在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種放射性元素,100年后只剩原來(lái)的一半.現(xiàn)有這種元素1克,3年后剩下
 
克.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x∈Q|x>-1},則( 。
A、∅∉A
B、
2
∈A
C、{2}?A
D、{
2
}∉A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c.若a=
2
,b=2,sinB+cosB=
2

(1)求角A的大小;
(2)求邊c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2ax+1-3(a>0且a≠1)的圖象經(jīng)過(guò)的定點(diǎn)坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)既是奇函數(shù),又在(0,+∞)上單調(diào)遞增的是( 。
A、y=x2
B、y=x3
C、y=log2x
D、y=3-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)(2i-1)i的共軛復(fù)數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案