【題目】由于《中國詩詞大會》節(jié)目在社會上反響良好,某地也模仿并舉辦民間詩詞大會,進入正賽的條件為:電腦隨機抽取10首古詩,參賽者能夠正確背誦6首及以上的進入正賽.若詩詞愛好者甲、乙參賽,他們背誦每一首古詩正確的概率均為.
(1)求甲進入正賽的概率.
(2)若參賽者甲、乙都進入了正賽,現(xiàn)有兩種賽制可供甲、乙進行PK,淘汰其中一人.
賽制一:積分淘汰制,電腦隨機抽取4首古詩,每首古詩背誦正確加2分,錯誤減1分.由于難度增加,甲背誦每首古詩正確的概率為,乙背誦每首古詩正確的概率為,設(shè)甲的得分為,乙的得分為.
賽制二:對詩淘汰制,甲、乙輪流互出詩名,由對方背誦且互不影響,乙出題,甲回答正確的概率為0.3,甲出題,乙回答正確的概率為0.4,誰先背誦錯誤誰先出局.
(i)賽制一中,求甲、乙得分的均值,并預測誰會被淘汰;
(ii)賽制二中,誰先出題甲獲勝的概率大?
【答案】(1);(2)(i),0,乙可能被淘汰;(ii)甲先出題甲獲勝的概率大.
【解析】
(1)利用相互獨立事件的概率公式求解;
(2)(i)分別寫出的可能取值,求出對應的概率,再求期望,比較大小得出結(jié)論;(ii)分別求出甲或乙先出題時,甲乙兩人獲勝的概率,從而得出結(jié)論.
(1)甲進入正賽的概率為
,
∴甲進入正賽的概率.
(2)(i)由題意,甲乙兩人的得分均有可能為8分,5分,2分,-1分,-4分.
,
,
,
.
,
,
.
.
,乙可能被淘汰.
(ii)甲先出題且甲獲勝的概率:
,
此為等比數(shù)列求和,.
乙先出題且乙獲勝的概率:
,
此為等比數(shù)列求和,
則甲獲勝的概率約為.
,甲先出題甲獲勝的概率大.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸長為4,直線被橢圓截得的線段長為.
(1)求橢圓的標準方程;
(2)過橢圓的右頂點作互相垂直的兩條直線分別交橢圓于兩點(點不同于橢圓的右頂點),證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過拋物線y2=2px(p>0)上一點P(1,2),作兩條直線分別交拋物線于A(x1,y1),B(x2,y2),當PA與PB的斜率存在且傾斜角互補時:
(1)求y1+y2的值;
(2)若直線AB在y軸上的截距b∈[﹣1,3]時,求△ABP面積S△ABP的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線與曲線,(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)寫出曲線,的極坐標方程;
(2)在極坐標系中,已知與,的公共點分別為,,,當時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,點,,分別是橢圓的左、右焦點,為等腰三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點作直線交橢圓于兩點,其中,另一條過的直線交橢圓于兩點(不與重合),且點不與點重合. 過作軸的垂線分別交直線,于,.
①求點坐標; ②求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,以軸為非負半軸為極軸建立極坐標系,兩坐標系相同的長度單位.圓的方程為被圓截得的弦長為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)設(shè)圓與直線交于點,若點的坐標為,且,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了迎接2019年全國文明城市評比,某市文明辦對市民進行了一次文明創(chuàng)建知識的網(wǎng)絡問卷調(diào)查.每一位市民有且僅有一次參加機會,通過隨機抽樣,得到參加問卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如下表所示:
組別 | |||||||
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以認為,此次問卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表),請利用正態(tài)分布的知識求;
(2)在(1)的條件下,文明辦為此次參加問卷調(diào)查的市民制定如下獎勵方案:
(i)得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;
(ii)每次獲贈的隨機話費和對應的概率為:
獲贈的隨機話費(單位:元) | 20 | 40 |
概率 |
現(xiàn)市民小王要參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求的分布列及數(shù)學期望.
附:①;
②若,則,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com