【題目】已知數(shù)列滿足,,設(shè)

1)求

2)判斷數(shù)列是否為等比數(shù)列,并說(shuō)明理由;

3)求的通項(xiàng)公式.

【答案】(1) b1=1,b2=2b3=4

(2) {bn}是首項(xiàng)為1,公比為2的等比數(shù)列.理由見(jiàn)解析.

(3) an=n·2n-1

【解析】分析:(1)根據(jù)題中條件所給的數(shù)列的遞推公式將其化為an+1=,分別令n=1n=2,代入上式求得a2=4a3=12,再利用,從而求得b1=1,b2=2,b3=4.

(2)利用條件可以得到,從而 可以得出bn+1=2bn,這樣就可以得到數(shù)列{bn}是首項(xiàng)為1,公比為2的等比數(shù)列.

(3)借助等比數(shù)列的通項(xiàng)公式求得,從而求得an=n·2n-1

詳解:(1)由條件可得an+1=

n=1代入得,a2=4a1,而a1=1,所以,a2=4.

n=2代入得,a3=3a2,所以,a3=12.

從而b1=1,b2=2,b3=4.

(2){bn}是首項(xiàng)為1,公比為2的等比數(shù)列.

由條件可得bn+1=2bn,又b1=1,所以{bn}是首項(xiàng)為1,公比為2的等比數(shù)列.

(3)由(2)可得,所以an=n·2n-1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,D、E是BC邊上兩點(diǎn),BD、BA、BC構(gòu)成以2為公比的等比數(shù)列,BD=6,∠AEB=2∠BAD,AE=9,則三角形ADE的面積為(
A.31.2
B.32.4
C.33.6
D.34.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,為線段的中點(diǎn),為線段上一點(diǎn).

(1)求證:

(2)求證:平面平面;

(3)當(dāng)平面時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求的值域;

(2)當(dāng)時(shí),函數(shù)的圖象關(guān)于對(duì)稱,求函數(shù)的對(duì)稱軸.

(3)若圖象上有一個(gè)最低點(diǎn),如果圖象上每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮短到原來(lái)的倍,然后向左平移1個(gè)單位可得的圖象,又知的所有正根從小到大依次為,且,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校有2500名學(xué)生,其中高一1000人,高二900人,高三600人,為了了解學(xué)生的身體健康狀況,采用分層抽樣的方法,若從本校學(xué)生中抽取100人,從高一和高三抽取樣本數(shù)分別為a,b,且直線ax+by+8=0與以A(1,﹣1)為圓心的圓交于B,C兩點(diǎn),且∠BAC=120°,則圓C的方程為(
A.(x﹣1)2+(y+1)2=1
B.(x﹣1)2+(y+1)2=2
C.(x﹣1)2+(y+1)2=
D.(x﹣1)2+(y+1)2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,,,分別為棱的中點(diǎn).

(1)求證:∥平面

(2)若異面直線 所成角為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究所計(jì)劃利用“神舟十號(hào)”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品甲,乙,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來(lái)決定具體安排,通過(guò)調(diào)查,有關(guān)數(shù)據(jù)如表:

產(chǎn)品甲(件)

產(chǎn)品乙(件)

研制成本與搭載費(fèi)用之和(萬(wàn)元/件)

200

300

計(jì)劃最大資金額3000

產(chǎn)品重量(千克/件)

10

5

最大搭載重量110千克

預(yù)計(jì)收益(萬(wàn)元/件)

160

120

試問(wèn):如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定直線,拋物線且拋物線的焦點(diǎn)在直線

(1)求拋物線的方程

(2)若的三個(gè)頂點(diǎn)都在拋物線,且點(diǎn)的縱坐標(biāo), 的重心恰是拋物線的焦點(diǎn),求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)將函數(shù)y=sin2x的圖象向左平移 個(gè)單位,向下平移b個(gè)單位,得到函數(shù)y=f(x)的圖象,求ab的值;
(Ⅲ)求函數(shù)f(x)在 上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案