精英家教網 > 高中數學 > 題目詳情

【題目】某學校有2500名學生,其中高一1000人,高二900人,高三600人,為了了解學生的身體健康狀況,采用分層抽樣的方法,若從本校學生中抽取100人,從高一和高三抽取樣本數分別為a,b,且直線ax+by+8=0與以A(1,﹣1)為圓心的圓交于B,C兩點,且∠BAC=120°,則圓C的方程為(
A.(x﹣1)2+(y+1)2=1
B.(x﹣1)2+(y+1)2=2
C.(x﹣1)2+(y+1)2=
D.(x﹣1)2+(y+1)2=

【答案】C
【解析】解:由題意, ,∴a=40,b=24, ∴直線ax+by+8=0,即5x+3y+1=0,
A(1,﹣1)到直線的距離為 =
∵直線ax+by+8=0與以A(1,﹣1)為圓心的圓交于B,C兩點,且∠BAC=120°,
∴r= ,
∴圓C的方程為(x﹣1)2+(y+1)2= ,
故選C.
【考點精析】利用系統(tǒng)抽樣方法和圓的標準方程對題目進行判斷即可得到答案,需要熟知把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本;第一個樣本采用簡單隨機抽樣的辦法抽;圓的標準方程:;圓心為A(a,b),半徑為r的圓的方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】從裝有 2個紅球和 2個白球的口袋中任取 2個球,則下列每對事件中,互斥事件的對數是( )對

(1)“至少有 1個白球”與“都是白球” (2)“至少有 1個白球”與“至少有 1個紅球”

(3)“至少有 1個白球”與“恰有 2個白球” (4)“至少有 1個白球”與“都是紅球”

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=ex+ax2(a∈R).
(1)若函數f(x)在R上單調,且y=f′(x)有零點,求a的值;
(2)若對x∈[0,+∞),有 ≥1,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)對任意 ,都有xln(kx)﹣kx+1≤mx,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=bcosC+ csinB.
(1)若a=2,b= ,求c
(2)設函數y= sin(2A﹣30°)﹣2sin2(C﹣15°),求y的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列滿足,設

1)求

2)判斷數列是否為等比數列,并說明理由;

3)求的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學組織了一次高二文科學生數學學業(yè)水平模擬測試,學校從測試合格的男、女生中各隨機抽取100人的成績進行統(tǒng)計分析,分別制成了如圖所示的男生和女生數學成績的頻率分布直方圖.

(Ⅰ)若所得分數大于等于80分認定為優(yōu)秀,求男、女生優(yōu)秀人數各有多少人?

(Ⅱ)在(Ⅰ)中的優(yōu)秀學生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有一名男生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓,直線

(1)求證:對,直線與圓總有兩個不同的交點;

(2)若,的值;

(3)當取最小值時,求直線的方程

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

Ⅰ)若,關于的不等式在區(qū)間上恒成立,求的取值范圍;

Ⅱ)若解關于的不等式;

Ⅲ)若,且,求的取值范圍.

查看答案和解析>>

同步練習冊答案