3.已知點(diǎn)A(0,-2),橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,F(xiàn)是橢圓的右焦點(diǎn),直線AF的斜率為$\frac{{2\sqrt{3}}}{3}$,O為坐標(biāo)原點(diǎn).
( I)求橢圓C的方程;
( II)設(shè)過(guò)點(diǎn)A的動(dòng)直線l與C交于P、Q兩點(diǎn),當(dāng)$|{PQ}|=\frac{{4\sqrt{2}}}{5}$時(shí),求l的方程.

分析 (Ⅰ)設(shè)出F(c,0),由AF的斜率為$\frac{{2\sqrt{3}}}{3}$求得c,再由橢圓的離心率求得a,結(jié)合隱含條件求得b,則橢圓方程可求;
(Ⅱ)由題意可知,當(dāng)直線l⊥x軸時(shí)不符合題意.當(dāng)直線l的斜率存在時(shí),設(shè)直線l:y=kx-2,聯(lián)立直線方程和橢圓方程,化為關(guān)于x的一元二次方程,然后利用弦長(zhǎng)公式求解得k,則直線l的方程可求.

解答 解:(Ⅰ)設(shè)F(c,0),由條件知,$\frac{2}{c}=\frac{{2\sqrt{3}}}{3}$,$c=\sqrt{3}$,又$\frac{c}{a}=\frac{{\sqrt{3}}}{2}$,∴a=2,
則b2=a2-c2=1,
∴C的方程$\frac{x^2}{4}+{y^2}=1$;
(Ⅱ)當(dāng)直線l⊥x軸時(shí)不符合題意;
當(dāng)直線l斜率存在時(shí),設(shè)直線l:y=kx-2,P(x1,y1),Q(x2,y2),
聯(lián)立$\left\{\begin{array}{l}{y=kx-2}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得(1+4k2)x2-16kx+12=0.
${x}_{1}+{x}_{2}=\frac{16k}{1+4{k}^{2}},{x}_{1}{x}_{2}=\frac{12}{1+4{k}^{2}}$,
∴|PQ|=$\sqrt{{k^2}+1}|{{x_1}-{x_2}}|$=$\frac{{4\sqrt{{k^2}+1}•\sqrt{4{k^2}-3}}}{{4{k^2}+1}}$,
又$|{PQ}|=\frac{{4\sqrt{2}}}{5}$,得$\frac{4\sqrt{1+{k}^{2}}•\sqrt{4{k}^{2}-3}}{4{k}^{2}+1}=\frac{4\sqrt{2}}{5}$,解答:k=±1,
∴直線l的方程為y=x-2或y=-x-2.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查了直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了弦長(zhǎng)公式的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=$\sqrt{x+1}$+$\frac{{{{(1-x)}^0}}}{2-x}$的定義域?yàn)閇-1,1)∪(1,2)∪(2,+∞)(用集合或區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知關(guān)于x的二次方程ax2-2(a+1)x+a-1=0有兩根,且一根大于2,另一根小于2,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖1:已知正方形ABCD的邊長(zhǎng)是2,有一動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿正方形的邊運(yùn)動(dòng),路線是B→C→D→A.設(shè)點(diǎn)M經(jīng)過(guò)的路程為x,△ABM的面積為S.

(1)求函數(shù)S=f(x)的解析式及其定義域;
(2)在圖2中畫(huà)出函數(shù)S=f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在公比為正數(shù)的等比數(shù)列{an}中,${a_3}-{a_1}=\frac{16}{27}$,${a_2}=-\frac{2}{9}$,數(shù)列{bn}(bn>0)的前n項(xiàng)和為Sn滿足${S_n}-{S_{n-1}}=\sqrt{S_n}+\sqrt{{S_{n-1}}}$(n≥2),且S10=100.
( I)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
( II)求數(shù)列{anbn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=x+lnx-2的零點(diǎn)的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若P(2,-1)為圓(x-1)2+y2=25的弦AB的中點(diǎn),則直線AB的方程為( 。
A.2x+y-3=0B.x+y-1=0C.x-y-3=0D.2x-y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知a>1,則$a+\frac{2}{a-1}$的最小值是2$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=ax+x2-xlna-b(b∈R,a>0且a≠1),e是自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(2)當(dāng)a>1時(shí),若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,求實(shí)數(shù)a的取值范圍.(參考公式:(ax)′=axlna)

查看答案和解析>>

同步練習(xí)冊(cè)答案