已知sinα+cosα=
1
2
,則cos4α=
 
考點(diǎn):二倍角的余弦
專題:三角函數(shù)的求值
分析:把條件平方求得sin2α的值,再根據(jù)cos4α=1-2sin22α,計(jì)算求得結(jié)果.
解答: 解:∵sinα+cosα=
1
2
,平方可得 1+sin2α=
1
4
,∴sin2α=-
3
4

∴cos4α=1-2sin22α=1-2×
9
16
=-
1
8

故答案為:-
1
8
點(diǎn)評(píng):本題主要考查利用二倍角公式進(jìn)行化簡(jiǎn)求值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an},其前n項(xiàng)和Sn滿足8Sn=an2+4an+3,且a2是a1和a7的等比中項(xiàng).
(Ⅰ)求數(shù)列{
a
 
n
}
的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2
an+3
4(n+1)
,求數(shù)列{
b
 
n
}
的前99項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖中的程序框圖,輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐O-ABCD的頂點(diǎn)在球心O,底面正方形ABCD的四個(gè)頂點(diǎn)在球面上,且四棱錐O-ABCD的體積為
3
2
2
,AB=
3
,則球O的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的連續(xù)函數(shù)y=f(x),對(duì)任意x滿足f(4-x)=f(x),(x-2)f′(x)<0.則下列結(jié)論正確的有
 

①函數(shù)y=f(x+2)為偶函數(shù);
②f(
2
)>f(sin18°+cos18°);
③若f(2)=2014,f(2014)=-2,則y=f(x)有兩個(gè)零點(diǎn);
④若x1<x2且x1+x2>4則f(x1)<f(x2);
⑤在△ABC中,若三個(gè)內(nèi)角A、B、C成等差數(shù)列,且f(
3
sinA)<f(sin(C-
π
6
)),則△ABC為鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱柱的左視圖如圖所示,則該正三棱柱的側(cè)面積為( 。
A、4
B、12
C、
4
3
3
D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知l,m是兩條不同的直線,α是一個(gè)平面,且l∥α,則下列命題正確的是( 。
A、若l∥m,則m∥α
B、若m∥α,則l∥m
C、若l⊥m,則m⊥α
D、若m⊥α,則l⊥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}共有n(n≥3,n∈N)項(xiàng),且a1=an=1,對(duì)每個(gè)i(1≤i≤n-1,i∈N),均有
ai+1
ai
∈{
1
2
,1,2}.
(1)當(dāng)n=3時(shí),寫出滿足條件的所有數(shù)列{an}(不必寫出過(guò)程);
(2)當(dāng)n=8時(shí),求滿足條件的數(shù)列{an}的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-mx+m-1,若對(duì)于區(qū)間[2,
5
2
]內(nèi)任意兩個(gè)相異實(shí)數(shù)x1,x2,總有|f(x1)-f(x2)|≤|x1-x2|成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案