已知四棱錐O-ABCD的頂點(diǎn)在球心O,底面正方形ABCD的四個(gè)頂點(diǎn)在球面上,且四棱錐O-ABCD的體積為
3
2
2
,AB=
3
,則球O的體積為
 
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積
專題:空間位置關(guān)系與距離
分析:根據(jù)題意畫出圖形,由四棱錐O-ABCD的體積求出球的半徑,計(jì)算出球的體積.
解答: 解:如圖,正方形ABCD中,∵AB=
3
,
∴AM=
1
2
AC=
1
2
×
(
3
)2+(
3
)2
=
6
2

設(shè)OA=R,∴OM=
R2-(
6
2
)
2

∴四棱錐O-ABCD的體積為:VO-ABCD=
1
3
×(
3
)
2
×
R2-(
6
2
)
2
=
3
2
2
,
解得:R=
6
,
∴球O的體積為V球O=
4πR3
3
=
×(
6
)
3
3
=8
6
π;
故答案為:8
6
π.
點(diǎn)評(píng):本題考查了求空間幾何體的體積問(wèn)題,解題時(shí)應(yīng)畫出圖形,求出球的半徑,容易得出結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,則下列命題正確的是( 。
A、α⊥β,m?α,則m⊥β
B、m∥n,n?α,則m∥α
C、m⊥α,m?β,則α⊥β
D、m∥α,n?a,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y=x2.過(guò)點(diǎn)M(1,2)的直線l交C于A,B兩點(diǎn).拋物線C在點(diǎn)A處的切線與在點(diǎn)B處的切線交于點(diǎn)P.
(Ⅰ)若直線l的斜率為1,求|AB|;
(Ⅱ)求△PAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

i是虛數(shù)單位,計(jì)算
4+i
1+i
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若loga
12
a-1
<1,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2-2kx+k2+1
x-k
的定義域?yàn)椋?,+∞),值域?yàn)閇2,+∞),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+cosα=
1
2
,則cos4α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x的焦點(diǎn)F,A,B是拋物線上橫坐標(biāo)不相等的兩點(diǎn),若AB的垂直平分線與x軸的交點(diǎn)是(4,0),則|AB|是最大值為( 。
A、2B、4C、6D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了了解某校今年高三男生的身體狀況,隨機(jī)抽查了部分男生,將測(cè)得的他們的體重(單位:千克)數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(1)求該校隨機(jī)抽查的部分男生的總?cè)藬?shù);
(2)以這所學(xué)校的樣本數(shù)據(jù)來(lái)估計(jì)全市的總體數(shù)據(jù),若從全市高三男生中任選三人,設(shè)X表示體重超過(guò)55千克的學(xué)生人數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案