已知函數(shù)f (x)定義域關(guān)于原點(diǎn)對(duì)稱,命題P:對(duì)于定義域中的每一個(gè)的值滿足

,命題Q:函數(shù)f (x) 是奇函數(shù)或是偶函數(shù)。則P是Q 成立的 (     )

A.充分而不必要條件     B.必要而不充分條件   

C.充要條件             D.既不充分也不必要

 

【答案】

B

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果對(duì)任意x∈[1,2],f′(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
(II)設(shè)函數(shù)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2判斷下列三個(gè)代數(shù)式:①x1+x2+a,②
x
2
1
+
x
2
2
+a2
,③
x
3
1
+
x
3
2
+a3

中有幾個(gè)為定值?并且是定值請(qǐng)求出;若不是定值,請(qǐng)把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+log2
x
3-x
(x∈(0,3))

(1)求證:f(x)+f(3-x)為定值.
(2)記S(n)=
1
2n
2n-1
i=1
f(1+
i
2n
)(n∈N*)
,求S(n).
(3)若函數(shù)f(x)的圖象與直線x=1,x=2以及x軸所圍成的封閉圖形的面積為S,試探究S(n)與S的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P是M,N的中點(diǎn).
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
(n∈N*,n≥2),求
lim
n→∞
4Sn-9Sn
4Sn+1+9Sn+1
的值;
(3)在(2)的條件下,若an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+1-a
a-x
(x≠a)

(1)當(dāng)f(x)的定義域?yàn)?span id="3qg4gps" class="MathJye">[a+
1
2
,a+1]時(shí),求f(x)的值域;
(2)試問(wèn)對(duì)定義域內(nèi)的任意x,f(2a-x)+f(x)的值是否為一個(gè)定值?若是,求出這個(gè)定值;若不是,說(shuō)明理由;
(3)設(shè)函數(shù)g(x)=x2+|(x-a)f(x)|,若
1
2
≤a≤
3
2
,求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•嘉定區(qū)一模)(理)已知函數(shù)f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點(diǎn).
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設(shè)Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn關(guān)于n的解析式;
(3)對(duì)(2)中的Tn,設(shè)數(shù)列{an}滿足a1=2,當(dāng)n≥2時(shí),an=4Tn+2,問(wèn)是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
對(duì)一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案