已知數(shù)列{an}的前n項(xiàng)和Sn=1+3n-2n2,(n∈N*),求該數(shù)列的通項(xiàng)公式.
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:根據(jù)數(shù)列項(xiàng)和和之間的關(guān)系即可得到結(jié)論.
解答: 解:當(dāng)n≥2時(shí),an=Sn-Sn-1=1+3n-2n2-[1+3(n-1)-2(n-1)2]=-4n+5,
當(dāng)n=1時(shí),a1=S1=1+3-2=2,不滿足an=-4n+5,
則該數(shù)列的通項(xiàng)公式為an=
2,n=1
-4n+5,n≥2
點(diǎn)評:本題主要考查數(shù)列通項(xiàng)公式的計(jì)算,利用遞推數(shù)列,根據(jù)n≥2時(shí),an=Sn-Sn-1是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=log3(x-3),若實(shí)數(shù)m,n滿足f(m)+f(3n)=2則m+n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是首項(xiàng)為a1、公比q(q≠1)為正數(shù)的等比數(shù)列,其前n項(xiàng)和為Sn,且有5S2=4S4,設(shè)bn=q+Sn
(1)求q的值;
(2)若數(shù)列{bn}是等比數(shù)列,求出a1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求橢圓x2+4y2=16的長軸和短軸長,離心率,焦點(diǎn)坐標(biāo),頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=cos(x+
4
3
π)的圖象向右平移φ個(gè)單位,所得圖象正好關(guān)于y軸對稱,則φ的最小正值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
1
x
,且f(1)=0
(1)求a的值;
(2)用定義證明f(x)在(-∞,0)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算對數(shù)函數(shù)y=lnx對應(yīng)于x取
1
e3
,
1
e2
1
e
,1,e 
1
2
,e2時(shí)的函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
i
=(1,0),
j
=(0,1),若向量
a
滿足|
a
-2
i
|+|
a
-
j
|=
5
,則|
a
+2
j
|
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β為兩個(gè)不重合的平面,m,n是兩條不重合的直線,給出下列四個(gè)判斷:
①若m⊥n,m⊥α,則n∥α;          
②若n?α,m?β,α與β相交且不垂直,則n與m不垂直;
③若m∥n,n⊥α,α∥β,則m⊥β;    
④若α⊥β,α∩β=m,m⊥n,則n⊥β.
其中所有錯(cuò)誤的序號是
 

查看答案和解析>>

同步練習(xí)冊答案